IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics096014812300890x.html
   My bibliography  Save this article

The potential of salinity gradient energy based on natural and anthropogenic resources in Sweden

Author

Listed:
  • Essalhi, Mohamed
  • Halil Avci, Ahmet
  • Lipnizki, Frank
  • Tavajohi, Naser

Abstract

This paper presents assessment of natural and anthropogenic sources of blue energy within Swedish territory to identify suitable spots for implementing new projects. The natural energy potential of salinity gradients was found to be higher in southwest Sweden, and a national energy resource potential of 2610.6 MW from seawater/river water mixing will be reduced to a technical potential ranging from 1044.3 MW to 1825.4 MW considering technical and environmental constraints. It has been found that the theoretical extractable energy potential in Sweden is equivalent to 13% of the total electricity consumption and 6.2% of the total final energy consumption by energy commodities.

Suggested Citation

  • Essalhi, Mohamed & Halil Avci, Ahmet & Lipnizki, Frank & Tavajohi, Naser, 2023. "The potential of salinity gradient energy based on natural and anthropogenic resources in Sweden," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s096014812300890x
    DOI: 10.1016/j.renene.2023.118984
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300890X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wick, Gerald L., 1978. "Power from salinity gradients," Energy, Elsevier, vol. 3(1), pages 95-100.
    2. Emdadi, Arash & Gikas, Petros & Farazaki, Maria & Emami, Yunus, 2016. "Salinity gradient energy potential at the hyper saline Urmia Lake – ZarrinehRud River system in Iran," Renewable Energy, Elsevier, vol. 86(C), pages 154-162.
    3. Ortega, Santiago & Stenzel, Peter & Alvarez-Silva, Oscar & Osorio, Andrés F., 2014. "Site-specific potential analysis for pressure retarded osmosis (PRO) power plants – The León River example," Renewable Energy, Elsevier, vol. 68(C), pages 466-474.
    4. Li, Weiyi & Krantz, William B. & Cornelissen, Emile R. & Post, Jan W. & Verliefde, Arne R.D. & Tang, Chuyang Y., 2013. "A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management," Applied Energy, Elsevier, vol. 104(C), pages 592-602.
    5. Alvarez-Silva, O.A. & Osorio, A.F. & Winter, C., 2016. "Practical global salinity gradient energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1387-1395.
    6. Helfer, Fernanda & Lemckert, Charles, 2015. "The power of salinity gradients: An Australian example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1-16.
    7. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Osmotic power potential in remote regions of Quebec," Renewable Energy, Elsevier, vol. 81(C), pages 62-70.
    8. Alvarez-Silva, Oscar & Osorio, Andrés F., 2015. "Salinity gradient energy potential in Colombia considering site specific constraints," Renewable Energy, Elsevier, vol. 74(C), pages 737-748.
    9. Daniilidis, Alexandros & Herber, Rien & Vermaas, David A., 2014. "Upscale potential and financial feasibility of a reverse electrodialysis power plant," Applied Energy, Elsevier, vol. 119(C), pages 257-265.
    10. Flocard, Francois & Ierodiaconou, Daniel & Coghlan, Ian R., 2016. "Multi-criteria evaluation of wave energy projects on the south-east Australian coast," Renewable Energy, Elsevier, vol. 99(C), pages 80-94.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    2. Tufa, Ramato Ashu & Pawlowski, Sylwin & Veerman, Joost & Bouzek, Karel & Fontananova, Enrica & di Profio, Gianluca & Velizarov, Svetlozar & Goulão Crespo, João & Nijmeijer, Kitty & Curcio, Efrem, 2018. "Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage," Applied Energy, Elsevier, vol. 225(C), pages 290-331.
    3. Etzaguery Marin-Coria & Rodolfo Silva & Cecilia Enriquez & M. Luisa Martínez & Edgar Mendoza, 2021. "Environmental Assessment of the Impacts and Benefits of a Salinity Gradient Energy Pilot Plant," Energies, MDPI, vol. 14(11), pages 1-24, June.
    4. Alvarez-Silva, O.A. & Osorio, A.F. & Winter, C., 2016. "Practical global salinity gradient energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1387-1395.
    5. Avci, Ahmet H. & Tufa, Ramato A. & Fontananova, Enrica & Di Profio, Gianluca & Curcio, Efrem, 2018. "Reverse Electrodialysis for energy production from natural river water and seawater," Energy, Elsevier, vol. 165(PA), pages 512-521.
    6. Giacalone, F. & Papapetrou, M. & Kosmadakis, G. & Tamburini, A. & Micale, G. & Cipollina, A., 2019. "Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment," Energy, Elsevier, vol. 181(C), pages 532-547.
    7. Jihye Kim & Kwanho Jeong & Myoung Jun Park & Ho Kyong Shon & Joon Ha Kim, 2015. "Recent Advances in Osmotic Energy Generation via Pressure-Retarded Osmosis (PRO): A Review," Energies, MDPI, vol. 8(10), pages 1-25, October.
    8. Salamanca, Jacobo M. & Álvarez-Silva, Oscar & Tadeo, Fernando, 2019. "Potential and analysis of an osmotic power plant in the Magdalena River using experimental field-data," Energy, Elsevier, vol. 180(C), pages 548-555.
    9. Konstantinos Zachopoulos & Nikolaos Kokkos & Costas Elmasides & Georgios Sylaios, 2022. "Coupling Hydrodynamic and Energy Production Models for Salinity Gradient Energy Assessment in a Salt-Wedge Estuary (Strymon River, Northern Greece)," Energies, MDPI, vol. 15(9), pages 1-24, April.
    10. He, Wei & Wang, Yang & Elyasigomari, Vahid & Shaheed, Mohammad Hasan, 2016. "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination," Renewable Energy, Elsevier, vol. 93(C), pages 608-619.
    11. Tufa, Ramato Ashu & Noviello, Ylenia & Di Profio, Gianluca & Macedonio, Francesca & Ali, Aamer & Drioli, Enrico & Fontananova, Enrica & Bouzek, Karel & Curcio, Efrem, 2019. "Integrated membrane distillation-reverse electrodialysis system for energy-efficient seawater desalination," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Ali, Aamer & Tufa, Ramato Ashu & Macedonio, Francesca & Curcio, Efrem & Drioli, Enrico, 2018. "Membrane technology in renewable-energy-driven desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1-21.
    13. Olkis, C. & Santori, G. & Brandani, S., 2018. "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat," Applied Energy, Elsevier, vol. 231(C), pages 222-234.
    14. Tian, Hailong & Wang, Ying & Pei, Yuansheng & Crittenden, John C., 2020. "Unique applications and improvements of reverse electrodialysis: A review and outlook," Applied Energy, Elsevier, vol. 262(C).
    15. Cala, Anggie & Maturana-Córdoba, Aymer & Soto-Verjel, Joseph, 2023. "Exploring the pretreatments' influence on pressure reverse osmosis: PRISMA review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
    17. Liu, Jin & Meucci, Alberto & Liu, Qingxiang & Babanin, Alexander V. & Ierodiaconou, Daniel & Xu, Xingkun & Young, Ian R., 2023. "A high-resolution wave energy assessment of south-east Australia based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 215(C).
    18. Emdadi, Arash & Gikas, Petros & Farazaki, Maria & Emami, Yunus, 2016. "Salinity gradient energy potential at the hyper saline Urmia Lake – ZarrinehRud River system in Iran," Renewable Energy, Elsevier, vol. 86(C), pages 154-162.
    19. Sumina Namboorimadathil Backer & Ines Bouaziz & Nabeela Kallayi & Reny Thankam Thomas & Gopika Preethikumar & Mohd Sobri Takriff & Tahar Laoui & Muataz Ali Atieh, 2022. "Review: Brine Solution: Current Status, Future Management and Technology Development," Sustainability, MDPI, vol. 14(11), pages 1-47, May.
    20. Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Osmotic power potential in remote regions of Quebec," Renewable Energy, Elsevier, vol. 81(C), pages 62-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s096014812300890x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.