IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp568-575.html
   My bibliography  Save this article

Comparative cost evaluation of heating oil and small-scale wood chips produced from Euro-Mediterranean forests

Author

Listed:
  • Esteban, Bernat
  • Riba, Jordi-Roger
  • Baquero, Grau
  • Rius, Antoni

Abstract

This work performs a cost evaluation of small-scale produced wood chips from forests in the Euro-Mediterranean region to be used for heating purposes. The study is focused on forests located in the Argençola municipality (Catalonia, northeastern Spain). The use of such easy-to-produce biofuel is appealing since it may be used as a valid substitute of heating oil to produce thermal energy in the same area where it is produced, thus minimizing transportation requirements and reducing dependence on the rising prices of heating oil. Additionally, it allows facing environmental and social concerns related to the current lack of management in the forests under analysis, which has led to an important increase in the biomass stock and wildfires risk. As wildfires in the Euro-Mediterranean region generate important impacts, an average economic cost of wildfires has been evaluated in this paper. The economic assessment of small-scale production and consumption of wood chips as proposed in this study has shown interesting economic benefits when compared with current heating oil prices. Results indicate that it is a realistic option since production costs range from 12.2 €/GJ to 18.5 €/GJ depending on the applied forestry practices, whereas current cost of heating oil is about 23.9 €/GJ. A sensitivity analysis has also been conducted to assess the impact of the data with higher uncertainty on the final results. It has been shown that the key factors that determine the viability of the proposed model are heating oil price, biomass stock growth rate, transportation requirements and applied forest management practices. Results presented prove that wood chips cost is quite independent of fossil fuel prices, thus higher fossil fuel prices greatly favors the use of wood chips when produced and consumed in the same area, thus minimizing transportation requirements. In addition, higher biomass growth rates than those considered in this work may reduce the final cost of small-scale produced wood chips.

Suggested Citation

  • Esteban, Bernat & Riba, Jordi-Roger & Baquero, Grau & Rius, Antoni, 2015. "Comparative cost evaluation of heating oil and small-scale wood chips produced from Euro-Mediterranean forests," Renewable Energy, Elsevier, vol. 74(C), pages 568-575.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:568-575
    DOI: 10.1016/j.renene.2014.08.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114004972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viana, H. & Cohen, Warren B. & Lopes, D. & Aranha, J., 2010. "Assessment of forest biomass for use as energy. GIS-based analysis of geographical availability and locations of wood-fired power plants in Portugal," Applied Energy, Elsevier, vol. 87(8), pages 2551-2560, August.
    2. D. Evan Mercer & Jeffrey P. Prestemon & David T. Butry & John M. Pye, 2007. "Evaluating Alternative Prescribed Burning Policies to Reduce Net Economic Damages from Wildfire," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(1), pages 63-77.
    3. Barrio, Melina & Loureiro, Maria L. & Chas, Maria Luisa, 2007. "Aproximacion a las perdidas economicas ocasionadas a corto plazo por los incendios forestales en Galicia en 2006," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 7(14), pages 1-20.
    4. Riera, Pere & Mogas, Joan, 2004. "Evaluation of a risk reduction in forest fires in a Mediterranean region," Forest Policy and Economics, Elsevier, vol. 6(6), pages 521-528, October.
    5. Steubing, Bernhard & Ballmer, Isabel & Gassner, Martin & Gerber, Léda & Pampuri, Luca & Bischof, Sandro & Thees, Oliver & Zah, Rainer, 2014. "Identifying environmentally and economically optimal bioenergy plant sizes and locations: A spatial model of wood-based SNG value chains," Renewable Energy, Elsevier, vol. 61(C), pages 57-68.
    6. Esteban, Bernat & Riba, Jordi-Roger & Baquero, Grau & Puig, Rita & Rius, Antoni, 2014. "Environmental assessment of small-scale production of wood chips as a fuel for residential heating boilers," Renewable Energy, Elsevier, vol. 62(C), pages 106-115.
    7. Carneiro, Patrícia & Ferreira, Paula, 2012. "The economic, environmental and strategic value of biomass," Renewable Energy, Elsevier, vol. 44(C), pages 17-22.
    8. Stolarski, Mariusz J. & Szczukowski, Stefan & Tworkowski, Józef & Krzyżaniak, Michał & Gulczyński, Paweł & Mleczek, Mirosław, 2013. "Comparison of quality and production cost of briquettes made from agricultural and forest origin biomass," Renewable Energy, Elsevier, vol. 57(C), pages 20-26.
    9. Casal, M.D. & Gil, M.V. & Pevida, C. & Rubiera, F. & Pis, J.J., 2010. "Influence of storage time on the quality and combustion behaviour of pine woodchips," Energy, Elsevier, vol. 35(7), pages 3066-3071.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Callois, Jean-Marc & Tivadar, Mihai & Sion, Baptiste, . "The feasibility and relevance of a community-based energy autonomy: physical, social and institutional factors," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 97(4).
    2. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    3. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    4. Jean-Marc Callois & Mihai Tivadar & Baptiste Sion, 2016. "The feasibility and relevance of a community-based energy autonomy: physical, social and institutional factors," Review of Agricultural, Food and Environmental Studies, Springer, vol. 97(4), pages 251-265, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnau González & Jordi-Roger Riba & Antoni Rius, 2015. "Optimal Sizing of a Hybrid Grid-Connected Photovoltaic–Wind–Biomass Power System," Sustainability, MDPI, vol. 7(9), pages 1-20, September.
    2. Esteban, Bernat & Riba, Jordi-Roger & Baquero, Grau & Puig, Rita & Rius, Antoni, 2014. "Environmental assessment of small-scale production of wood chips as a fuel for residential heating boilers," Renewable Energy, Elsevier, vol. 62(C), pages 106-115.
    3. Ferreira, Sérgio & Monteiro, Eliseu & Brito, Paulo & Vilarinho, Cândida, 2017. "Biomass resources in Portugal: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1221-1235.
    4. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    5. Wang, Zhiwei & Lei, Tingzhou & Chang, Xia & Shi, Xinguang & Xiao, Ju & Li, Zaifeng & He, Xiaofeng & Zhu, Jinling & Yang, Shuhua, 2015. "Optimization of a biomass briquette fuel system based on grey relational analysis and analytic hierarchy process: A study using cornstalks in China," Applied Energy, Elsevier, vol. 157(C), pages 523-532.
    6. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    7. Chico-Santamarta, Leticia & Godwin, Richard John & Chaney, Keith & White, David Richard & Humphries, Andrea Claire, 2013. "On-farm storage of baled and pelletized canola (Brassica napus L.) straw: Variations in the combustion related properties," Energy, Elsevier, vol. 50(C), pages 429-437.
    8. Leonel Jorge Ribeiro Nunes & Radu Godina & João Carlos de Oliveira Matias, 2019. "Technological Innovation in Biomass Energy for the Sustainable Growth of Textile Industry," Sustainability, MDPI, vol. 11(2), pages 1-12, January.
    9. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    10. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    11. Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
    12. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    13. Tyron J. Venn & John Quiggin, 2017. "Early evacuation is the best bushfire risk mitigation strategy for south-eastern Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(3), pages 481-497, July.
    14. Martínez-Espiñeira, Roberto & Lyssenko, Nikita, 2011. "Correcting for the endogeneity of pro-environment behavioral choices in contingent valuation," Ecological Economics, Elsevier, vol. 70(8), pages 1435-1439, June.
    15. Paiano, Annarita & Lagioia, Giovanni, 2016. "Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case," Energy Policy, Elsevier, vol. 91(C), pages 161-173.
    16. Corbelle Rico, Eduardo & Crecente Maseda, Rafael, 2008. "Land Abandonment: Concept And Consequences," Revista Galega de Economía, University of Santiago de Compostela. Faculty of Economics and Business., vol. 17(2).
    17. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    18. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    19. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    20. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2018. "Evaluation of the potential and geospatial distribution of waste and residues for bio-SNG production: A case study for the Republic of Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 288-301.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:568-575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.