IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005901.html
   My bibliography  Save this article

An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion

Author

Listed:
  • Lopez, Javier Contreras
  • Kolios, Athanasios

Abstract

The increasing pressure of offshore wind developments is leading to projects being located in areas with more difficult access and greater weather barriers. As these constraints increase, O&M costs also grow in importance. Therefore, the current scenario requires a careful planning to avoid unnecessary costly maintenance decisions or unexpected failures. To overcome the problem of increasing O&M costs and difficult access, this manuscript presents an autonomous decision-making Reinforcement Learning (RL) agent to improve O&M planning for the Leading Edge Erosion (LEE) problem. The method developed in this work makes use of a linear degradation model to account for the damage progression dynamics and site-specific weather models. The RL-based agent proposed in this manuscript is able to reduce expected O&M costs in the range of 12%–21% when compared with condition-based policies.

Suggested Citation

  • Lopez, Javier Contreras & Kolios, Athanasios, 2024. "An autonomous decision-making agent for offshore wind turbine blades under leading edge erosion," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005901
    DOI: 10.1016/j.renene.2024.120525
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120525?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.