IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12344-d927884.html
   My bibliography  Save this article

Effect of Different Types of Erosion on the Aerodynamic Performance of Wind Turbine Airfoils

Author

Listed:
  • Xiaohang Wang

    (State Key Laboratory of Hydro-Power Equipment, Harbin 150040, China
    Harbin Electric Machinery Co., Ltd., Harbin 150040, China
    Harbin Institute of Large Electrical Machinery, Harbin 150040, China)

  • Zhenbo Tang

    (Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Na Yan

    (Harbin Electric Machinery Co., Ltd., Harbin 150040, China)

  • Guojun Zhu

    (Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology, Xi’an 710048, China)

Abstract

Taking the S823 airfoil as the research object, this study investigates the influence of different types of leading-edge erosion on the aerodynamic performance of airfoil by using the computational fluid dynamics method. The effect of leading-edge erosion on the inception of stall vortex is also analysed. The results show that when the angle of attack (AoA) is greater than 5°, the leading-edge erosion results in a significant decrease in the lift coefficient and an increase in the drag coefficient. The deterioration in the drag coefficient of the airfoil caused by leading-edge erosion is much greater than that of the lift coefficient. Moreover, the maximum promotion rate of the drag coefficient can reach 357% at Re = 300,000. The exacerbation of the erosion level leads to a dramatic expansion of the stall vortex on the airfoil suction side at a large AoA and results in a reduction in the pressure difference between the pressure and suction sides of the airfoil. This is also the reason erosion causes the degradation of the aerodynamic performance of the wind turbine airfoil. This work is beneficial to establish the reasonable maintenance cycle of the wind turbine blades working in a sand blown environment.

Suggested Citation

  • Xiaohang Wang & Zhenbo Tang & Na Yan & Guojun Zhu, 2022. "Effect of Different Types of Erosion on the Aerodynamic Performance of Wind Turbine Airfoils," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12344-:d:927884
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12344/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12344/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    2. Herring, Robbie & Dyer, Kirsten & Martin, Ffion & Ward, Carwyn, 2019. "The increasing importance of leading edge erosion and a review of existing protection solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Koodly Ravishankara, Akshay & Özdemir, Huseyin & van der Weide, Edwin, 2021. "Analysis of leading edge erosion effects on turbulent flow over airfoils," Renewable Energy, Elsevier, vol. 172(C), pages 765-779.
    4. Han, Woobeom & Kim, Jonghwa & Kim, Bumsuk, 2018. "Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 817-823.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeanie A. Aird & Rebecca J. Barthelmie & Sara C. Pryor, 2023. "Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images," Energies, MDPI, vol. 16(6), pages 1-23, March.
    2. López, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel, 2023. "A wind turbine blade leading edge rain erosion computational framework," Renewable Energy, Elsevier, vol. 203(C), pages 131-141.
    3. Sara C. Pryor & Rebecca J. Barthelmie & Jeremy Cadence & Ebba Dellwik & Charlotte B. Hasager & Stephan T. Kral & Joachim Reuder & Marianne Rodgers & Marijn Veraart, 2022. "Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research," Energies, MDPI, vol. 15(22), pages 1-41, November.
    4. Sergio Campobasso, M. & Castorrini, Alessio & Ortolani, Andrea & Minisci, Edmondo, 2023. "Probabilistic analysis of wind turbine performance degradation due to blade erosion accounting for uncertainty of damage geometry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    5. Charlotte Bay Hasager & Flemming Vejen & Witold Robert Skrzypiński & Anna-Maria Tilg, 2021. "Rain Erosion Load and Its Effect on Leading-Edge Lifetime and Potential of Erosion-Safe Mode at Wind Turbines in the North Sea and Baltic Sea," Energies, MDPI, vol. 14(7), pages 1-24, April.
    6. Verma, Amrit Shankar & Yan, Jiquan & Hu, Weifei & Jiang, Zhiyu & Shi, Wei & Teuwen, Julie J.E., 2023. "A review of impact loads on composite wind turbine blades: Impact threats and classification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Hasager, C. & Vejen, F. & Bech, J.I. & Skrzypiński, W.R. & Tilg, A.-M. & Nielsen, M., 2020. "Assessment of the rain and wind climate with focus on wind turbine blade leading edge erosion rate and expected lifetime in Danish Seas," Renewable Energy, Elsevier, vol. 149(C), pages 91-102.
    8. Eleni Douvi & Dimitra Douvi, 2023. "Aerodynamic Characteristics of Wind Turbines Operating under Hazard Environmental Conditions: A Review," Energies, MDPI, vol. 16(22), pages 1-43, November.
    9. Papi, Francesco & Balduzzi, Francesco & Ferrara, Giovanni & Bianchini, Alessandro, 2021. "Uncertainty quantification on the effects of rain-induced erosion on annual energy production and performance of a Multi-MW wind turbine," Renewable Energy, Elsevier, vol. 165(P1), pages 701-715.
    10. Koodly Ravishankara, Akshay & Özdemir, Huseyin & van der Weide, Edwin, 2021. "Analysis of leading edge erosion effects on turbulent flow over airfoils," Renewable Energy, Elsevier, vol. 172(C), pages 765-779.
    11. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    12. Francesco Papi & Lorenzo Cappugi & Simone Salvadori & Mauro Carnevale & Alessandro Bianchini, 2020. "Uncertainty Quantification of the Effects of Blade Damage on the Actual Energy Production of Modern Wind Turbines," Energies, MDPI, vol. 13(15), pages 1-18, July.
    13. Mishnaevsky, Leon & Tempelis, Antonios & Kuthe, Nikesh & Mahajan, Puneet, 2023. "Recent developments in the protection of wind turbine blades against leading edge erosion: Materials solutions and predictive modelling," Renewable Energy, Elsevier, vol. 215(C).
    14. Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.
    15. Verma, Amrit Shankar & Jiang, Zhiyu & Caboni, Marco & Verhoef, Hans & van der Mijle Meijer, Harald & Castro, Saullo G.P. & Teuwen, Julie J.E., 2021. "A probabilistic rainfall model to estimate the leading-edge lifetime of wind turbine blade coating system," Renewable Energy, Elsevier, vol. 178(C), pages 1435-1455.
    16. Bech, Jakob Ilsted & Johansen, Nicolai Frost-Jensen & Madsen, Martin Bonde & Hannesdóttir, Ásta & Hasager, Charlotte Bay, 2022. "Experimental study on the effect of drop size in rain erosion test and on lifetime prediction of wind turbine blades," Renewable Energy, Elsevier, vol. 197(C), pages 776-789.
    17. Deshun Li & Ting He & Qing Wang, 2023. "Experimental Research on the Effect of Particle Parameters on Dynamic Stall Characteristics of the Wind Turbine Airfoil," Energies, MDPI, vol. 16(4), pages 1-15, February.
    18. Mishnaevsky, Leon & Hasager, Charlotte Bay & Bak, Christian & Tilg, Anna-Maria & Bech, Jakob I. & Doagou Rad, Saeed & Fæster, Søren, 2021. "Leading edge erosion of wind turbine blades: Understanding, prevention and protection," Renewable Energy, Elsevier, vol. 169(C), pages 953-969.
    19. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12344-:d:927884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.