IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123012776.html
   My bibliography  Save this article

Techno-economic analysis of Green-H2@Scale production

Author

Listed:
  • Sadiq, Muhammad
  • Alshehhi, Reem J.
  • Urs, Rahul Rajeevkumar
  • Mayyas, Ahmad T.

Abstract

The International Energy Agency (IEA) established the “H2 Implementing Agreement (HIA)" to promote H2 transition in various economic sectors. Today, less than one percent of the world's H2 production is “Green”. Lack of regulations, high production costs, and inadequate infrastructure are significant impediments. The U.S. Department of Energy set a “111-target” which translates into $1/kg-H2 in the next decade. Many countries in the Middle East and North Africa (MENA) region have announced ambitious plans to produce green H2. Through techno-economic metrics and the impact of economies of scale, this study investigates H2@Scale production. H2 Production Analysis and the System Advisor Model developed by the U.S. Department of Energy were used for analysis. The results demonstrate a significant decrease in the levelized cost of H2 (LCOH) when the production volume is scaled up. It was determined that the key cost drivers are capital cost, energy, installed balance of the plant, and mechanical and electrical subsystems. The studied location is found promising for scaled production and developing its commodity status. The findings could serve as a benchmark for key stakeholders, investors, policymakers, and the developer of relevant strategies in the infrastructure and H2 value chain.

Suggested Citation

  • Sadiq, Muhammad & Alshehhi, Reem J. & Urs, Rahul Rajeevkumar & Mayyas, Ahmad T., 2023. "Techno-economic analysis of Green-H2@Scale production," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012776
    DOI: 10.1016/j.renene.2023.119362
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012776
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.