IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v203y2023icp373-381.html
   My bibliography  Save this article

Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model

Author

Listed:
  • Liang, Xiaoling
  • Fu, Shifeng
  • Cai, Fulin
  • Han, Xingxing
  • Zhu, Weijun
  • Yang, Hua
  • Shen, Wenzhong

Abstract

Wind tunnel experiments are performed to investigate the wake characteristics of a model wind turbine using Particle Image Velocimetry (PIV) and Hot-wire velocimetry. Results show that the velocity deficit at the hub height is the largest, and the stratification of the velocity shear layer at the blade tip is obvious. The instantaneous turbulence kinetic energy (TKE) level is much larger than the mean TKE, especially downstream of the blade tip. In the x/dT=4 position of the wake region, the mean TKE increased by two times due to the blade tip disturbance. The Reynolds stresses also increase and the instantaneous value is the highest along the blade’s tip. A thin vortex band appears at the root and tip of the blade, the vortex core expands and diffuses with the development of the wake along the downstream direction. The two-dimensional distributions of velocity spectra fΦu reveal that the velocity fluctuation at x/dT=2 location is small and that at x/dT=4 position is the largest. Based on Jensen’s wake model, a new theoretical wake model is proposed to predict the velocity distribution in the wind turbine wake. The calculated results of the wake model are in good agreement with the experimental data.

Suggested Citation

  • Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
  • Handle: RePEc:eee:renene:v:203:y:2023:i:c:p:373-381
    DOI: 10.1016/j.renene.2022.12.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122018602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance)," Energy, Elsevier, vol. 113(C), pages 713-722.
    2. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    3. Fu, Shifeng & Zhang, Buen & Zheng, Yuan & Chamorro, Leonardo P., 2020. "In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays," Applied Energy, Elsevier, vol. 269(C).
    4. Seim, Fredrik & Gravdahl, Arne R. & Adaramola, Muyiwa S., 2017. "Validation of kinematic wind turbine wake models in complex terrain using actual windfarm production data," Energy, Elsevier, vol. 123(C), pages 742-753.
    5. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
    6. Regodeseves, P. García & Morros, C. Santolaria, 2020. "Unsteady numerical investigation of the full geometry of a horizontal axis wind turbine: Flow through the rotor and wake," Energy, Elsevier, vol. 202(C).
    7. Sedaghatizadeh, Nima & Arjomandi, Maziar & Kelso, Richard & Cazzolato, Benjamin & Ghayesh, Mergen H., 2018. "Modelling of wind turbine wake using large eddy simulation," Renewable Energy, Elsevier, vol. 115(C), pages 1166-1176.
    8. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    9. Adaramola, M.S. & Krogstad, P.-Å., 2011. "Experimental investigation of wake effects on wind turbine performance," Renewable Energy, Elsevier, vol. 36(8), pages 2078-2086.
    10. Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
    12. Sturge, D. & Sobotta, D. & Howell, R. & While, A. & Lou, J., 2015. "A hybrid actuator disc – Full rotor CFD methodology for modelling the effects of wind turbine wake interactions on performance," Renewable Energy, Elsevier, vol. 80(C), pages 525-537.
    13. Huiwen Liu & Imran Hayat & Yaqing Jin & Leonardo P. Chamorro, 2018. "On the Evolution of the Integral Time Scale within Wind Farms," Energies, MDPI, vol. 11(1), pages 1-11, January.
    14. Leonardo P. Chamorro & Fernando Porté-Agel, 2011. "Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study," Energies, MDPI, vol. 4(11), pages 1-21, November.
    15. Talavera, Miguel & Shu, Fangjun, 2017. "Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel," Renewable Energy, Elsevier, vol. 109(C), pages 363-371.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    3. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    4. Bingzheng Dou & Zhanpei Yang & Michele Guala & Timing Qu & Liping Lei & Pan Zeng, 2020. "Comparison of Different Driving Modes for the Wind Turbine Wake in Wind Tunnels," Energies, MDPI, vol. 13(8), pages 1-17, April.
    5. Buen Zhang & Shyuan Cheng & Fanghan Lu & Yuan Zheng & Leonardo P. Chamorro, 2020. "Impact of Topographic Steps in the Wake and Power of a Wind Turbine: Part A—Statistics," Energies, MDPI, vol. 13(23), pages 1-14, December.
    6. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    7. Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
    8. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    9. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    10. Li, Qing'an & Wang, Ye & Kamada, Yasunari & Maeda, Takao & Xu, Jianzhong & Zhou, Shuni & Zhang, Fanghong & Cai, Chang, 2022. "Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements," Energy, Elsevier, vol. 238(PB).
    11. Kaldellis, John K. & Triantafyllou, Panagiotis & Stinis, Panagiotis, 2021. "Critical evaluation of Wind Turbines’ analytical wake models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Wang, Zhenyu & Ozbay, Ahmet & Tian, Wei & Hu, Hui, 2018. "An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine," Energy, Elsevier, vol. 147(C), pages 94-109.
    13. Veisi, Amin Allah & Shafiei Mayam, Mohammad Hossein, 2017. "Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation," Applied Energy, Elsevier, vol. 197(C), pages 375-392.
    14. Shyuan Cheng & Yaqing Jin & Leonardo P. Chamorro, 2020. "Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms," Energies, MDPI, vol. 13(7), pages 1-13, April.
    15. Huiwen Liu & Imran Hayat & Yaqing Jin & Leonardo P. Chamorro, 2018. "On the Evolution of the Integral Time Scale within Wind Farms," Energies, MDPI, vol. 11(1), pages 1-11, January.
    16. Meng, Haoran & Su, Hao & Guo, Jia & Qu, Timing & Lei, Liping, 2022. "Experimental investigation on the power and thrust characteristics of a wind turbine model subjected to surge and sway motions," Renewable Energy, Elsevier, vol. 181(C), pages 1325-1337.
    17. Syed Ahmed Kabir, Ijaz Fazil & Safiyullah, Ferozkhan & Ng, E.Y.K. & Tam, Vivian W.Y., 2020. "New analytical wake models based on artificial intelligence and rivalling the benchmark full-rotor CFD predictions under both uniform and ABL inflows," Energy, Elsevier, vol. 193(C).
    18. Rubel C. Das & Yu-Lin Shen, 2023. "Analysis of Wind Farms under Different Yaw Angles and Wind Speeds," Energies, MDPI, vol. 16(13), pages 1-19, June.
    19. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
    20. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:203:y:2023:i:c:p:373-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.