IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp597-611.html
   My bibliography  Save this article

Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine

Author

Listed:
  • Zhang, Sanxia
  • Luo, Kun
  • Yuan, Renyu
  • Wang, Qiang
  • Wang, Jianwen
  • Zhang, Liru
  • Fan, Jianren

Abstract

A computational framework used to evaluate the aerodynamics and aeroacoustics is developed and validated against the experimental data in the previous work. In the present work, the different operating parameters of inlet flow velocity, tip speed ratio and turbulence intensity have been considered separately. The aerodynamic performance, the vortex dynamics and the aerodynamic acoustics of the full scale horizontal-axis wind turbine under different operating conditions have been investigated. And the analysis of the impact of different operating parameters is discussed. It is observed that the model has an extension to different conditions and it is sensitive and accurate for simulating the results of different condition parameters. According to the results, the wind with lower turbulence intensity will be better for the operating, and the wind turbine operation can be optimized by adjusting the rotating speed (TSR) according to the inflow wind velocity. In the end, a noise and power trade-off graphics has been proposed based on the wind turbine acoustics and performance results. With enough operating conditions available for reference, selecting the optimal operating parameters under specific operating conditions according to the noise and power trade-offs graphics becomes feasible.

Suggested Citation

  • Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:597-611
    DOI: 10.1016/j.energy.2018.07.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryi, Jaeha & Choi, Jong-Soo & Lee, Seunghoon & Lee, Soogab, 2014. "A full-scale prediction method for wind turbine rotor noise by using wind tunnel test data," Renewable Energy, Elsevier, vol. 65(C), pages 257-264.
    2. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (Part I: Power performance)," Energy, Elsevier, vol. 113(C), pages 713-722.
    3. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    4. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments," Energy, Elsevier, vol. 141(C), pages 262-272.
    5. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    6. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
    7. Kaviani, H. & Nejat, A., 2017. "Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm," Energy, Elsevier, vol. 140(P1), pages 1198-1215.
    8. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    9. Luo, Kun & Zhang, Sanxia & Gao, Zhiying & Wang, Jianwen & Zhang, Liru & Yuan, Renyu & Fan, Jianren & Cen, Kefa, 2015. "Large-eddy simulation and wind-tunnel measurement of aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Renewable Energy, Elsevier, vol. 77(C), pages 351-362.
    10. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Nishida, Yusuke, 2017. "Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of Horizontal Axis Wind Turbine in turbulent inflows," Energy, Elsevier, vol. 135(C), pages 799-810.
    11. Tadamasa, A. & Zangeneh, M., 2011. "Numerical prediction of wind turbine noise," Renewable Energy, Elsevier, vol. 36(7), pages 1902-1912.
    12. Sedaghatizadeh, Nima & Arjomandi, Maziar & Kelso, Richard & Cazzolato, Benjamin & Ghayesh, Mergen H., 2018. "Modelling of wind turbine wake using large eddy simulation," Renewable Energy, Elsevier, vol. 115(C), pages 1166-1176.
    13. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Yusuke, Nishida, 2016. "Effect of turbulence on power performance of a Horizontal Axis Wind Turbine in yawed and no-yawed flow conditions," Energy, Elsevier, vol. 109(C), pages 703-711.
    14. Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake effects on a Horizontal Axis Wind Turbine in field experiments (Part I: Horizontal axis direction)," Energy, Elsevier, vol. 134(C), pages 482-492.
    15. Lee, Seunghoon & Lee, Soogab, 2014. "Numerical and experimental study of aerodynamic noise by a small wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 108-112.
    16. Sedaghat, Ahmad & El Haj Assad, M. & Gaith, Mohamed, 2014. "Aerodynamics performance of continuously variable speed horizontal axis wind turbine with optimal blades," Energy, Elsevier, vol. 77(C), pages 752-759.
    17. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    18. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (Part II: Dynamic pressure measurement)," Energy, Elsevier, vol. 112(C), pages 574-587.
    19. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.
    20. Ghasemian, Masoud & Nejat, Amir, 2015. "Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy," Energy, Elsevier, vol. 88(C), pages 711-717.
    21. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Visualization of the flow field and aerodynamic force on a Horizontal Axis Wind Turbine in turbulent inflows," Energy, Elsevier, vol. 111(C), pages 57-67.
    22. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Murata, Junsuke & Nishida, Yusuke, 2016. "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: Static pressure measurement)," Energy, Elsevier, vol. 111(C), pages 701-712.
    23. Li, Qing'an & Murata, Junsuke & Endo, Masayuki & Maeda, Takao & Kamada, Yasunari, 2016. "Experimental and numerical investigation of the effect of turbulent inflow on a Horizontal Axis Wind Turbine (part II: Wake characteristics)," Energy, Elsevier, vol. 113(C), pages 1304-1315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ihor Shchur & Marek Lis & Yurii Biletskyi, 2023. "A Non-Equilibrium Thermodynamic Approach for Analysis of Power Conversion Efficiency in the Wind Energy System," Energies, MDPI, vol. 16(13), pages 1-25, July.
    2. Zhu, Xiaocheng & Sun, Chong & Ouyang, Hua & Du, Zhaohui, 2022. "Numerical investigation of the effect of towers and nacelles on the near wake of a horizontal-axis wind turbine model," Energy, Elsevier, vol. 238(PA).
    3. Sun, Chong & Tian, Tian & Zhu, Xiaocheng & Hua, Ouyang & Du, Zhaohui, 2021. "Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition," Energy, Elsevier, vol. 227(C).
    4. Ould Moussa, Mohamed, 2020. "Experimental and numerical performances analysis of a small three blades wind turbine," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qing'an & Xu, Jianzhong & Maeda, Takao & Kamada, Yasunari & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2019. "Laser Doppler Velocimetry (LDV) measurements of airfoil surface flow on a Horizontal Axis Wind Turbine in boundary layer," Energy, Elsevier, vol. 183(C), pages 341-357.
    2. Li, Qing’an & Xu, Jianzhong & Kamada, Yasunari & Takao, Maeda & Nishimura, Shogo & Wu, Guangxing & Cai, Chang, 2020. "Experimental investigations of airfoil surface flow of a horizontal axis wind turbine with LDV measurements," Energy, Elsevier, vol. 191(C).
    3. Kamada, Yasunari & Li, Qing'an & Maeda, Takao & Yamada, Keisuke, 2019. "Wind tunnel experimental investigation of flow field around two-dimensional single hill models," Renewable Energy, Elsevier, vol. 136(C), pages 1107-1118.
    4. Li, Qing'an & Kamada, Yasunari & Maeda, Takao & Nishida, Yusuke, 2017. "Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of Horizontal Axis Wind Turbine in turbulent inflows," Energy, Elsevier, vol. 135(C), pages 799-810.
    5. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments," Energy, Elsevier, vol. 141(C), pages 262-272.
    6. Li, Qing'an & Cai, Chang & Kamada, Yasunari & Maeda, Takao & Hiromori, Yuto & Zhou, Shuni & Xu, Jianzhong, 2021. "Prediction of power generation of two 30 kW Horizontal Axis Wind Turbines with Gaussian model," Energy, Elsevier, vol. 231(C).
    7. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Hiromori, Yuto, 2018. "Investigation of wake characteristic of a 30 kW rated power Horizontal Axis Wind Turbine with wake model and field measurement," Applied Energy, Elsevier, vol. 225(C), pages 1190-1204.
    8. Li, Qing'an & Wang, Ye & Kamada, Yasunari & Maeda, Takao & Xu, Jianzhong & Zhou, Shuni & Zhang, Fanghong & Cai, Chang, 2022. "Diagonal inflow effect on the wake characteristics of a horizontal axis wind turbine with Gaussian model and field measurements," Energy, Elsevier, vol. 238(PB).
    9. Veisi, Amin Allah & Shafiei Mayam, Mohammad Hossein, 2017. "Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation," Applied Energy, Elsevier, vol. 197(C), pages 375-392.
    10. Wu, Zhenlong & Bangga, Galih & Cao, Yihua, 2019. "Effects of lateral wind gusts on vertical axis wind turbines," Energy, Elsevier, vol. 167(C), pages 1212-1223.
    11. Wu, Guangxing & Zhang, Chaoyu & Cai, Chang & Yang, Ke & Shi, Kezhong, 2020. "Uncertainty prediction on the angle of attack of wind turbine blades based on the field measurements," Energy, Elsevier, vol. 200(C).
    12. Fei, Zhao & Tengyuan, Wang & Xiaoxia, Gao & Haiying, Sun & Hongxing, Yang & Zhonghe, Han & Yu, Wang & Xiaoxun, Zhu, 2020. "Experimental study on wake interactions and performance of the turbines with different rotor-diameters in adjacent area of large-scale wind farm," Energy, Elsevier, vol. 199(C).
    13. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    14. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    15. Liu, W.Y., 2017. "A review on wind turbine noise mechanism and de-noising techniques," Renewable Energy, Elsevier, vol. 108(C), pages 311-320.
    16. Li, Qing’an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake effects on a Horizontal Axis Wind Turbine in field experiments (Part I: Horizontal axis direction)," Energy, Elsevier, vol. 134(C), pages 482-492.
    17. Li, Qing’an & Kamada, Yasunari & Maeda, Takao & Yamada, Keisuke, 2020. "Investigations of flow field around two-dimensional simplified models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 152(C), pages 270-282.
    18. Sun, Chong & Tian, Tian & Zhu, Xiaocheng & Hua, Ouyang & Du, Zhaohui, 2021. "Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition," Energy, Elsevier, vol. 227(C).
    19. Wen, Jiahao & Zhou, Lei & Zhang, Hongfu, 2023. "Mode interpretation of blade number effects on wake dynamics of small-scale horizontal axis wind turbine," Energy, Elsevier, vol. 263(PA).
    20. Guoqiang, Li & Weiguo, Zhang & Yubiao, Jiang & Pengyu, Yang, 2019. "Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator," Energy, Elsevier, vol. 185(C), pages 90-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:597-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.