IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220307817.html
   My bibliography  Save this article

Unsteady numerical investigation of the full geometry of a horizontal axis wind turbine: Flow through the rotor and wake

Author

Listed:
  • Regodeseves, P. García
  • Morros, C. Santolaria

Abstract

Aerodynamics of the Mexico wind turbine was investigated using CFD techniques. The complete wind turbine was modelled. In order to accomplish this goal, the computational domain was discretized with a multi-block structured hexahedron grid, which was generated manually to ensure a good quality mesh and optimize the number of cells. Furthermore, a sliding mesh technique was applied to the moving mesh zone to calculate in detail the flow around the blades. All the relevant operating conditions were considered: turbulent wake state, nominal condition and stall state. The simulations were performed using the unsteady Reynolds-Averaged Navier-Stokes equations for incompressible flow and the SST k-ω turbulence model to close the governing equations. The CFD predictions were compared with the experimental data available from the MEXICO experiment: global forces and torques, pressure distributions around the blades and velocity distributions along the radial and axial traverses were all in a good agreement. The flow through the rotor, the interaction between the blades and the tower, and the development of the wake were then investigated. The CFD simulations have provided more accurate results, contributing to a deeper understanding of the wind turbine aerodynamics.

Suggested Citation

  • Regodeseves, P. García & Morros, C. Santolaria, 2020. "Unsteady numerical investigation of the full geometry of a horizontal axis wind turbine: Flow through the rotor and wake," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307817
    DOI: 10.1016/j.energy.2020.117674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sedaghatizadeh, Nima & Arjomandi, Maziar & Kelso, Richard & Cazzolato, Benjamin & Ghayesh, Mergen H., 2019. "The effect of the boundary layer on the wake of a horizontal axis wind turbine," Energy, Elsevier, vol. 182(C), pages 1202-1221.
    2. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    3. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    4. Karthikeyan, N. & Kalidasa Murugavel, K. & Arun Kumar, S. & Rajakumar, S., 2015. "Review of aerodynamic developments on small horizontal axis wind turbine blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 801-822.
    5. Rafael V. Rodrigues & Corinne Lengsfeld, 2019. "Development of a Computational System to Improve Wind Farm Layout, Part II: Wind Turbine Wakes Interaction," Energies, MDPI, vol. 12(7), pages 1-27, April.
    6. Yaoru Qian & Zhenyu Zhang & Tongguang Wang, 2018. "Comparative Study of the Aerodynamic Performance of the New MEXICO Rotor under Yaw Conditions," Energies, MDPI, vol. 11(4), pages 1-18, April.
    7. Rafael V. Rodrigues & Corinne Lengsfeld, 2019. "Development of a Computational System to Improve Wind Farm Layout, Part I: Model Validation and Near Wake Analysis," Energies, MDPI, vol. 12(5), pages 1-24, March.
    8. J. G. Schepers & S. J. Schreck, 2019. "Aerodynamic measurements on wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    2. Zexia Zhang & Christian Santoni & Thomas Herges & Fotis Sotiropoulos & Ali Khosronejad, 2021. "Time-Averaged Wind Turbine Wake Flow Field Prediction Using Autoencoder Convolutional Neural Networks," Energies, MDPI, vol. 15(1), pages 1-20, December.
    3. Zhao, Shuang & Wang, Jianwen & Han, Yuxia & Liu, Zhen, 2022. "Research on the rotor speed and aerodynamic characteristics of a dynamic yawing wind turbine with a short-time uniform wind direction variation," Energy, Elsevier, vol. 249(C).
    4. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    5. Yuan Li & Zengjin Xu & Zuoxia Xing & Bowen Zhou & Haoqian Cui & Bowen Liu & Bo Hu, 2020. "A Modified Reynolds-Averaged Navier–Stokes-Based Wind Turbine Wake Model Considering Correction Modules," Energies, MDPI, vol. 13(17), pages 1-19, August.
    6. Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
    7. Wenyan Li & Yuxuan Xiong & Guoliang Su & Zuyang Ye & Guowu Wang & Zhao Chen, 2023. "The Aerodynamic Performance of Horizontal Axis Wind Turbines under Rotation Condition," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    8. Shahzad Ali, Qazi & Kim, Man-Hoe, 2022. "Quantifying impacts of shell augmentation on power output of airborne wind energy system at elevated heights," Energy, Elsevier, vol. 239(PA).
    9. Xue, Yingxian & Yang, Mingyang & Pan, Lei & Deng, Kangyao & Wu, Xintao & Wang, Cuicui, 2021. "Gasdynamic behaviours of a radial turbine with pulsating incoming flow," Energy, Elsevier, vol. 218(C).
    10. Monjardín-Gámez, José de Jesús & Campos-Amezcua, Rafael & Gómez-Martínez, Roberto & Sánchez-García, Raúl & Campos-Amezcua, Alfonso & Trujillo-Franco, Luis G. & Abundis-Fong, Hugo F., 2023. "Large eddy simulation and experimental study of the turbulence on wind turbines," Energy, Elsevier, vol. 273(C).
    11. Shantanu Purohit & Ijaz Fazil Syed Ahmed Kabir & E. Y. K. Ng, 2021. "On the Accuracy of uRANS and LES-Based CFD Modeling Approaches for Rotor and Wake Aerodynamics of the (New) MEXICO Wind Turbine Rotor Phase-III," Energies, MDPI, vol. 14(16), pages 1-26, August.
    12. Paxis Marques João Roque & Shyama Pada Chowdhury & Zhongjie Huan, 2021. "Performance Enhancement of Proposed Namaacha Wind Farm by Minimising Losses Due to the Wake Effect: A Mozambican Case Study," Energies, MDPI, vol. 14(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shantanu Purohit & Ijaz Fazil Syed Ahmed Kabir & E. Y. K. Ng, 2021. "On the Accuracy of uRANS and LES-Based CFD Modeling Approaches for Rotor and Wake Aerodynamics of the (New) MEXICO Wind Turbine Rotor Phase-III," Energies, MDPI, vol. 14(16), pages 1-26, August.
    2. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    3. Manisha Sawant & Sameer Thakare & A. Prabhakara Rao & Andrés E. Feijóo-Lorenzo & Neeraj Dhanraj Bokde, 2021. "A Review on State-of-the-Art Reviews in Wind-Turbine- and Wind-Farm-Related Topics," Energies, MDPI, vol. 14(8), pages 1-30, April.
    4. Wang, Ying & Li, Gaohui & Shen, Sheng & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cylinder in front of the blade leading edge," Energy, Elsevier, vol. 143(C), pages 1107-1124.
    5. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    6. Ke Song & Huiting Huan & Yuchi Kang, 2022. "Aerodynamic Performance and Wake Characteristics Analysis of Archimedes Spiral Wind Turbine Rotors with Different Blade Angle," Energies, MDPI, vol. 16(1), pages 1-18, December.
    7. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    8. Takanori Uchida & Susumu Takakuwa, 2019. "A Large-Eddy Simulation-Based Assessment of the Risk of Wind Turbine Failures Due to Terrain-Induced Turbulence over a Wind Farm in Complex Terrain," Energies, MDPI, vol. 12(10), pages 1-19, May.
    9. Hailay Kiros Kelele & Torbjørn Kirstian Nielsen & Lars Froyd & Mulu Bayray Kahsay, 2020. "Catchment Based Aerodynamic Performance Analysis of Small Wind Turbine Using a Single Blade Concept for a Low Cost of Energy," Energies, MDPI, vol. 13(21), pages 1-20, November.
    10. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
    11. Hailay Kiros Kelele & Lars Frøyd & Mulu Bayray Kahsay & Torbjørn Kristian Nielsen, 2022. "Characterization of Aerodynamics of Small Wind Turbine Blade for Enhanced Performance and Low Cost of Energy," Energies, MDPI, vol. 15(21), pages 1-23, October.
    12. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).
    13. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    14. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    15. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    16. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    17. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    18. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    19. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    20. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.