IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4430-d404912.html
   My bibliography  Save this article

A Modified Reynolds-Averaged Navier–Stokes-Based Wind Turbine Wake Model Considering Correction Modules

Author

Listed:
  • Yuan Li

    (School of Science, Shenyang University of Technology, Shenyang 110870, China)

  • Zengjin Xu

    (School of Chemical Equipment, Shenyang University of Technology, Shenyang 110870, China)

  • Zuoxia Xing

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Bowen Zhou

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Haoqian Cui

    (Fuxin Electric Power Supply Company, State Grid Liaoning Electric Power Co. Ltd., Fuxin 123000, China)

  • Bowen Liu

    (School of Science, Shenyang University of Technology, Shenyang 110870, China)

  • Bo Hu

    (State Grid Liaoning Electric Power Co. Ltd., Shenyang 110004, China)

Abstract

Increasing wind power generation has been introduced into power systems to meet the renewable energy targets in power generation. The output efficiency and output power stability are of great importance for wind turbines to be integrated into power systems. The wake effect influences the power generation efficiency and stability of wind turbines. However, few studies consider comprehensive corrections in an aerodynamic model and a turbulence model, which challenges the calculation accuracy of the velocity field and turbulence field in the wind turbine wake model, thus affecting wind power integration into power systems. To tackle this challenge, this paper proposes a modified Reynolds-averaged Navier–Stokes (MRANS)-based wind turbine wake model to simulate the wake effects. Our main aim is to add correction modules in a 3D aerodynamic model and a shear-stress transport (SST) k-ω turbulence model, which are converted into a volume source term and a Reynolds stress term for the MRANS-based wake model, respectively. A correction module including blade tip loss, hub loss, and attack angle deviation is considered in the 3D aerodynamic model, which is established by blade element momentum aerodynamic theory and an improved Cauchy fuzzy distribution. Meanwhile, another correction module, including a hold source term, regulating parameters and reducing the dissipation term, is added into the SST k - ω turbulence model. Furthermore, a structured hexahedron mesh with variable size is developed to significantly improve computational efficiency and make results smoother. Simulation results of the velocity field and turbulent field with the proposed approach are consistent with the data of real wind turbines, which verifies the effectiveness of the proposed approach. The variation law of the expansion effect and the double-hump effect are also given.

Suggested Citation

  • Yuan Li & Zengjin Xu & Zuoxia Xing & Bowen Zhou & Haoqian Cui & Bowen Liu & Bo Hu, 2020. "A Modified Reynolds-Averaged Navier–Stokes-Based Wind Turbine Wake Model Considering Correction Modules," Energies, MDPI, vol. 13(17), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4430-:d:404912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farhan, A. & Hassanpour, A. & Burns, A. & Motlagh, Y. Ghaffari, 2019. "Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance," Renewable Energy, Elsevier, vol. 131(C), pages 1255-1273.
    2. Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
    3. Sedaghatizadeh, Nima & Arjomandi, Maziar & Kelso, Richard & Cazzolato, Benjamin & Ghayesh, Mergen H., 2019. "The effect of the boundary layer on the wake of a horizontal axis wind turbine," Energy, Elsevier, vol. 182(C), pages 1202-1221.
    4. Sarlak, H. & Meneveau, C. & Sørensen, J.N., 2015. "Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions," Renewable Energy, Elsevier, vol. 77(C), pages 386-399.
    5. Lee, Hakjin & Lee, Duck-Joo, 2019. "Numerical investigation of the aerodynamics and wake structures of horizontal axis wind turbines by using nonlinear vortex lattice method," Renewable Energy, Elsevier, vol. 132(C), pages 1121-1133.
    6. Seim, Fredrik & Gravdahl, Arne R. & Adaramola, Muyiwa S., 2017. "Validation of kinematic wind turbine wake models in complex terrain using actual windfarm production data," Energy, Elsevier, vol. 123(C), pages 742-753.
    7. Tang, Di & Xu, Min & Mao, Jianfeng & Zhu, Hai, 2020. "Unsteady performances of a parked large-scale wind turbine in the typhoon activity zones," Renewable Energy, Elsevier, vol. 149(C), pages 617-630.
    8. Regodeseves, P. García & Morros, C. Santolaria, 2020. "Unsteady numerical investigation of the full geometry of a horizontal axis wind turbine: Flow through the rotor and wake," Energy, Elsevier, vol. 202(C).
    9. Roggenburg, Michael & Esquivel-Puentes, Helber A. & Vacca, Andrea & Bocanegra Evans, Humberto & Garcia-Bravo, Jose M. & Warsinger, David M. & Ivantysynova, Monika & Castillo, Luciano, 2020. "Techno-economic analysis of a hydraulic transmission for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1194-1204.
    10. Zhenzhou Shao & Ying Wu & Li Li & Shuang Han & Yongqian Liu, 2019. "Multiple Wind Turbine Wakes Modeling Considering the Faster Wake Recovery in Overlapped Wakes," Energies, MDPI, vol. 12(4), pages 1-14, February.
    11. Arteaga-López, Ernesto & Ángeles-Camacho, Cesar & Bañuelos-Ruedas, Francisco, 2019. "Advanced methodology for feasibility studies on building-mounted wind turbines installation in urban environment: Applying CFD analysis," Energy, Elsevier, vol. 167(C), pages 181-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paxis Marques João Roque & Shyama Pada Chowdhury & Zhongjie Huan, 2021. "Performance Enhancement of Proposed Namaacha Wind Farm by Minimising Losses Due to the Wake Effect: A Mozambican Case Study," Energies, MDPI, vol. 14(14), pages 1-22, July.
    2. Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
    3. Wang, Peilin & Liu, Qingsong & Li, Chun & Miao, Weipao & Yue, Minnan & Xu, Zifei, 2022. "Investigation of the aerodynamic characteristics of horizontal axis wind turbine using an active flow control method via boundary layer suction," Renewable Energy, Elsevier, vol. 198(C), pages 1032-1048.
    4. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    5. Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    7. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    8. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Mori, Naoya, 2017. "Investigation of wake characteristics of a Horizontal Axis Wind Turbine in vertical axis direction with field experiments," Energy, Elsevier, vol. 141(C), pages 262-272.
    9. Yang, Lin & Rojas, Jose I. & Montlaur, Adeline, 2020. "Advanced methodology for wind resource assessment near hydroelectric dams in complex mountainous areas," Energy, Elsevier, vol. 190(C).
    10. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    11. Oscar Garcia & Alain Ulazia & Mario del Rio & Sheila Carreno-Madinabeitia & Andoni Gonzalez-Arceo, 2019. "An Energy Potential Estimation Methodology and Novel Prototype Design for Building-Integrated Wind Turbines," Energies, MDPI, vol. 12(10), pages 1-21, May.
    12. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    13. Deskos, Georgios & Laizet, Sylvain & Piggott, Matthew D., 2019. "Turbulence-resolving simulations of wind turbine wakes," Renewable Energy, Elsevier, vol. 134(C), pages 989-1002.
    14. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    15. Shijia Zhou & Fei Rong & Zhangtao Yin & Shoudao Huang & Yuebin Zhou, 2018. "HVDC Transmission Technology of Wind Power System with Multi-Phase PMSG," Energies, MDPI, vol. 11(12), pages 1-16, November.
    16. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    17. Xu Ning & Decheng Wan, 2019. "LES Study of Wake Meandering in Different Atmospheric Stabilities and Its Effects on Wind Turbine Aerodynamics," Sustainability, MDPI, vol. 11(24), pages 1-26, December.
    18. Barbarić, Marina & Batistić, Ivan & Guzović, Zvonimir, 2022. "Numerical study of the flow field around hydrokinetic turbines with winglets on the blades," Renewable Energy, Elsevier, vol. 192(C), pages 692-704.
    19. Regodeseves, P. García & Morros, C. Santolaria, 2020. "Unsteady numerical investigation of the full geometry of a horizontal axis wind turbine: Flow through the rotor and wake," Energy, Elsevier, vol. 202(C).
    20. Rafael V. Rodrigues & Corinne Lengsfeld, 2019. "Development of a Computational System to Improve Wind Farm Layout, Part I: Model Validation and Near Wake Analysis," Energies, MDPI, vol. 12(5), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4430-:d:404912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.