IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6411-d456876.html
   My bibliography  Save this article

Impact of Topographic Steps in the Wake and Power of a Wind Turbine: Part A—Statistics

Author

Listed:
  • Buen Zhang

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China
    These authors contributed equally to this work.)

  • Shyuan Cheng

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA
    These authors contributed equally to this work.)

  • Fanghan Lu

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA)

  • Yuan Zheng

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210024, China)

  • Leonardo P. Chamorro

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA
    Department of Aerospace Engineering, University of Illinois, Urbana, IL 61801, USA
    Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801, USA
    Department of Geology, University of Illinois, Urbana, IL 61801, USA)

Abstract

We experimentally explored the modulation of various forward- and backward-facing topographic steps on the wake and power output of a wind turbine model. The sharp surface changes located in the vicinity of the turbine tower consisted of steps Δ z 0 / d T = − 0.64 , −0.42, −0.21, 0, 0.21, and 0.42, where Δ z 0 is the level difference between the upwind and downwind sides of the step and d T is the turbine diameter. Particle image velocimetry was used to obtain the wake statistics in the wake within the streamwise distance x / d T ∈ [ 2 , 5] and vertical span z / d T ∈ [ − 0.7 , 0.7], where the origin is set at the rotor hub. Complementary single-point hotwire measurements were obtained in the wake along the rotor axis every Δ x / d T = 1 within x / d T ∈ [ 1 , 8]. Mean power output and its fluctuations were obtained for each of the six scenarios. The results indicate strong modulation of the steps in the wake statistics and some effect on the power output. Remarkably, the backward-facing steps induced a larger velocity deficit in the wake with respect to the base case with substantial wake deflection. In contrast, the forward-facing steps exhibited a much lower velocity deficit and negligible wake deflection. The mean flow and velocity gradients’ changes promoted distinct turbulence dynamics and, consequently, associated levels. In particular, turbulence intensity and kinematic Reynolds shear stress were enhanced and reduced with the backward- and forward-facing steps, respectively. It is worth pointing out the particular effect of the steps on the transport of the turbulence kinetic energy T K E . Ejections were predominant around the top tip, whereas sweeps dominated around the turbine hub height. The magnitude of these quantities was sensitive to the step height. In particular, a much weaker sweep occurred in the forward-facing steps; in addition, the flat terrain and the backward-facing step cases shared strong sweeps.

Suggested Citation

  • Buen Zhang & Shyuan Cheng & Fanghan Lu & Yuan Zheng & Leonardo P. Chamorro, 2020. "Impact of Topographic Steps in the Wake and Power of a Wind Turbine: Part A—Statistics," Energies, MDPI, vol. 13(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6411-:d:456876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyun-Goo Kim & Wan-Ho Jeon, 2019. "Experimental and Numerical Analysis of a Seawall’s Effect on Wind Turbine Performance," Energies, MDPI, vol. 12(20), pages 1-14, October.
    2. Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
    3. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    4. Carvalho, D. & Rocha, A. & Santos, C. Silva & Pereira, R., 2013. "Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques," Applied Energy, Elsevier, vol. 108(C), pages 493-504.
    5. Na, Ji Sung & Koo, Eunmo & Muñoz-Esparza, Domingo & Jin, Emilia Kyung & Linn, Rodman & Lee, Joon Sang, 2016. "Turbulent kinetics of a large wind farm and their impact in the neutral boundary layer," Energy, Elsevier, vol. 95(C), pages 79-90.
    6. Prósper, Miguel A. & Otero-Casal, Carlos & Fernández, Felipe Canoura & Miguez-Macho, Gonzalo, 2019. "Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations," Renewable Energy, Elsevier, vol. 135(C), pages 674-686.
    7. Huiwen Liu & Imran Hayat & Yaqing Jin & Leonardo P. Chamorro, 2018. "On the Evolution of the Integral Time Scale within Wind Farms," Energies, MDPI, vol. 11(1), pages 1-11, January.
    8. Gao, Xiaoxia & Wang, Tengyuan & Li, Bingbing & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Zhao, Fei, 2019. "Investigation of wind turbine performance coupling wake and topography effects based on LiDAR measurements and SCADA data," Applied Energy, Elsevier, vol. 255(C).
    9. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    10. Migoya, Emilio & Crespo, Antonio & García, Javier & Moreno, Fermín & Manuel, Fernando & Jiménez, Ángel & Costa, Alexandre, 2007. "Comparative study of the behavior of wind-turbines in a wind farm," Energy, Elsevier, vol. 32(10), pages 1871-1885.
    11. Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Kuo, Jim Y.J. & Romero, David A. & Beck, J. Christopher & Amon, Cristina H., 2016. "Wind farm layout optimization on complex terrains – Integrating a CFD wake model with mixed-integer programming," Applied Energy, Elsevier, vol. 178(C), pages 404-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhi & Zhang, Yuquan & Zheng, Yuan & Zhang, Jisheng & Fernandez-Rodriguez, Emmanuel & Zang, Wei & Ji, Renwei, 2023. "Power fluctuation and wake characteristics of tidal stream turbine subjected to wave and current interaction," Energy, Elsevier, vol. 264(C).
    2. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    2. Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
    3. Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
    4. Shyuan Cheng & Yaqing Jin & Leonardo P. Chamorro, 2020. "Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms," Energies, MDPI, vol. 13(7), pages 1-13, April.
    5. Shyuan Cheng & Mahmoud Elgendi & Fanghan Lu & Leonardo P. Chamorro, 2021. "On the Wind Turbine Wake and Forest Terrain Interaction," Energies, MDPI, vol. 14(21), pages 1-13, November.
    6. Fu, Shifeng & Zhang, Buen & Zheng, Yuan & Chamorro, Leonardo P., 2020. "In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays," Applied Energy, Elsevier, vol. 269(C).
    7. Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
    8. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    9. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    10. Zhang, Yuquan & Zang, Wei & Zheng, Jinhai & Cappietti, Lorenzo & Zhang, Jisheng & Zheng, Yuan & Fernandez-Rodriguez, E., 2021. "The influence of waves propagating with the current on the wake of a tidal stream turbine," Applied Energy, Elsevier, vol. 290(C).
    11. Gao, Xiaoxia & Li, Bingbing & Wang, Tengyuan & Sun, Haiying & Yang, Hongxing & Li, Yonghua & Wang, Yu & Zhao, Fei, 2020. "Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements," Applied Energy, Elsevier, vol. 260(C).
    12. Huiwen Liu & Imran Hayat & Yaqing Jin & Leonardo P. Chamorro, 2018. "On the Evolution of the Integral Time Scale within Wind Farms," Energies, MDPI, vol. 11(1), pages 1-11, January.
    13. Mateusz Rzeszutek & Adriana Kłosowska & Robert Oleniacz, 2023. "Accuracy Assessment of WRF Model in the Context of Air Quality Modeling in Complex Terrain," Sustainability, MDPI, vol. 15(16), pages 1-27, August.
    14. Radünz, William Corrêa & Sakagami, Yoshiaki & Haas, Reinaldo & Petry, Adriane Prisco & Passos, Júlio César & Miqueletti, Mayara & Dias, Eduardo, 2021. "Influence of atmospheric stability on wind farm performance in complex terrain," Applied Energy, Elsevier, vol. 282(PA).
    15. Gao, Xiaoxia & Chen, Yao & Xu, Shinai & Gao, Wei & Zhu, Xiaoxun & Sun, Haiying & Yang, Hongxing & Han, Zhonghe & Wang, Yu & Lu, Hao, 2022. "Comparative experimental investigation into wake characteristics of turbines in three wind farms areas with varying terrain complexity from LiDAR measurements," Applied Energy, Elsevier, vol. 307(C).
    16. Jin, Jingxin & Li, Yilin & Ye, Lin & Xu, Xunjian & Lu, Jiazheng, 2023. "Integration of atmospheric stability in wind resource assessment through multi-scale coupling method," Applied Energy, Elsevier, vol. 348(C).
    17. Wang, Qiang & Luo, Kun & Wu, Chunlei & Zhu, Zhaofan & Fan, Jianren, 2022. "Mesoscale simulations of a real onshore wind power base in complex terrain: Wind farm wake behavior and power production," Energy, Elsevier, vol. 241(C).
    18. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Xiaoxia, Gao & Luqing, Li & Shaohai, Zhang & Xiaoxun, Zhu & Haiying, Sun & Hongxing, Yang & Yu, Wang & Hao, Lu, 2022. "LiDAR-based observation and derivation of large-scale wind turbine's wake expansion model downstream of a hill," Energy, Elsevier, vol. 259(C).
    20. Brogna, Roberto & Feng, Ju & Sørensen, Jens Nørkær & Shen, Wen Zhong & Porté-Agel, Fernando, 2020. "A new wake model and comparison of eight algorithms for layout optimization of wind farms in complex terrain," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6411-:d:456876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.