IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i20p3877-d276089.html
   My bibliography  Save this article

Experimental and Numerical Analysis of a Seawall’s Effect on Wind Turbine Performance

Author

Listed:
  • Hyun-Goo Kim

    (New-Renewable Energy Resource Center, Korea Institute of Energy Research, Daejeon 34129, Korea)

  • Wan-Ho Jeon

    (CEDIC Co. Ltd., Seoul 08506, Korea)

Abstract

For the purposes of this study, a wind tunnel experiment and a numerical analysis during ebb and high tides were conducted to determine the positive and negative effects of wind flow influenced by a seawall structure on the performance of wind turbines installed along a coastal seawall. The comparison of the wind flow field between a wind tunnel experiment performed with a 1/100 scale model and a computational fluid dynamics (CFD) analysis confirmed that the MP k -turbulence model estimated flow separation on the leeside of the seawall the most accurately. The CFD analysis verified that wind speed-up occurred due to the virtual hill effect caused by the seawall’s windward slope and the recirculation zone of its rear face, which created a positive effect by mitigating wind shear while increasing the mean wind speed in the wind turbine’s rotor plane. In contrast, the turbulence effect of flow separation on the seawall’s leeside was limited to the area below the wind turbine rotor, and had no negative effect. The use of the CFD verified with the comparison with the wind tunnel experiment was extended to the full-scale seawall, and the results of the analysis based on the wind turbine Supervisory Control and Data Acquisition (SCADA) data of a wind farm confirmed that the seawall effect was equivalent to a 1.5% increase in power generation as a result of a mitigation of the wind profile.

Suggested Citation

  • Hyun-Goo Kim & Wan-Ho Jeon, 2019. "Experimental and Numerical Analysis of a Seawall’s Effect on Wind Turbine Performance," Energies, MDPI, vol. 12(20), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3877-:d:276089
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/20/3877/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/20/3877/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takanori Uchida, 2018. "Computational Fluid Dynamics Approach to Predict the Actual Wind Speed over Complex Terrain," Energies, MDPI, vol. 11(7), pages 1-14, June.
    2. Nicolas Tobin & Leonardo P. Chamorro, 2017. "Windbreak Effects Within Infinite Wind Farms," Energies, MDPI, vol. 10(8), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buen Zhang & Shyuan Cheng & Fanghan Lu & Yuan Zheng & Leonardo P. Chamorro, 2020. "Impact of Topographic Steps in the Wake and Power of a Wind Turbine: Part A—Statistics," Energies, MDPI, vol. 13(23), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jagdeep Singh & Jahrul M Alam, 2023. "Large-Eddy Simulation of Utility-Scale Wind Farm Sited over Complex Terrain," Energies, MDPI, vol. 16(16), pages 1-26, August.
    2. Takanori Uchida & Kenichiro Sugitani, 2020. "Numerical and Experimental Study of Topographic Speed-Up Effects in Complex Terrain," Energies, MDPI, vol. 13(15), pages 1-38, July.
    3. Koichi Watanabe & Yuji Ohya & Takanori Uchida, 2019. "Power Output Enhancement of a Ducted Wind Turbine by Stabilizing Vortices around the Duct," Energies, MDPI, vol. 12(16), pages 1-17, August.
    4. Chen, Jian & Zhang, Yu & Xu, Zhongyun & Li, Chun, 2023. "Flow characteristics analysis and power comparison for two novel types of vertically staggered wind farms," Energy, Elsevier, vol. 263(PE).
    5. Takanori Uchida, 2018. "Numerical Investigation of Terrain-Induced Turbulence in Complex Terrain by Large-Eddy Simulation (LES) Technique," Energies, MDPI, vol. 11(10), pages 1-15, October.
    6. Youtian Yang & Lin Dong & Jiazi Li & Wenli Li & Dan Sheng & Hua Zhang, 2022. "A refined model of a typhoon near-surface wind field based on CFD," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 389-404, October.
    7. Shyuan Cheng & Mahmoud Elgendi & Fanghan Lu & Leonardo P. Chamorro, 2021. "On the Wind Turbine Wake and Forest Terrain Interaction," Energies, MDPI, vol. 14(21), pages 1-13, November.
    8. Takanori Uchida & Susumu Takakuwa, 2019. "A Large-Eddy Simulation-Based Assessment of the Risk of Wind Turbine Failures Due to Terrain-Induced Turbulence over a Wind Farm in Complex Terrain," Energies, MDPI, vol. 12(10), pages 1-19, May.
    9. Susumu Takakuwa & Takanori Uchida, 2022. "Improvement of Airflow Simulation by Refining the Inflow Wind Direction and Applying Atmospheric Stability for Onshore and Offshore Wind Farms Affected by Topography," Energies, MDPI, vol. 15(14), pages 1-27, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:20:p:3877-:d:276089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.