IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7204-d670428.html
   My bibliography  Save this article

On the Wind Turbine Wake and Forest Terrain Interaction

Author

Listed:
  • Shyuan Cheng

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA)

  • Mahmoud Elgendi

    (Department of Mechanical Power Engineering and Energy, Minia University, Minia 61519, Egypt
    Department of Mechanical Engineering, UAE University, Al Ain City P.O. Box 15551, United Arab Emirates
    Department of Aerospace Engineering, University of Illinois, Urbana, IL 61801, USA)

  • Fanghan Lu

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA)

  • Leonardo P. Chamorro

    (Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA
    Department of Aerospace Engineering, University of Illinois, Urbana, IL 61801, USA
    Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL 61801, USA
    Department of Geology, University of Illinois, Urbana, IL 61801, USA)

Abstract

Future wind power developments may be located in complex topographic and harsh environments; forests are one type of complex terrain that offers untapped potential for wind energy. A detailed analysis of the unsteady interaction between wind turbines and the distinct boundary layers from those terrains is necessary to ensure optimized design, operation, and life span of wind turbines and wind farms. Here, laboratory experiments were carried to explore the interaction between the wake of a horizontal-axis model wind turbine and the boundary layer flow over forest-like canopies and the modulation of forest density in the turbulent exchange. The case of the turbine in a canonical boundary layer is included for selected comparison. The experiments were performed in a wind tunnel fully covered with tree models of height H / z h u b ≈ 0.36 , where z h u b is the turbine hub height, which were placed in a staggered pattern sharing streamwise and transverse spacing of Δ x / d c = 1.3 and 2.7, where d c is the mean crown diameter of the trees. Particle image velocimetry is used to characterize the incoming flow and three fields of view in the turbine wake within x / d T ∈ ( 2 , 7 ) and covering the vertical extent of the wake. The results show a significant modulation of the forest-like canopies on the wake statistics relative to a case without forest canopies. Forest density did not induce dominant effects on the bulk features of the wake; however, a faster flow recovery, particularly in the intermediate wake, occurred with the case with less dense forest. Decomposition of the kinematic shear stress using a hyperbolic hole in the quadrant analysis reveals a substantial effect sufficiently away from the canopy top with sweep-dominated events that differentiate from ejection-dominated observed in canonical boundary layers. The comparatively high background turbulence induced by the forest reduced the modulation of the rotor in the wake; the quadrant fraction distribution in the intermediate wake exhibited similar features of the associated incoming flow.

Suggested Citation

  • Shyuan Cheng & Mahmoud Elgendi & Fanghan Lu & Leonardo P. Chamorro, 2021. "On the Wind Turbine Wake and Forest Terrain Interaction," Energies, MDPI, vol. 14(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7204-:d:670428
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
    2. Lee, Amy H.I. & Chen, Hsing Hung & Kang, He-Yau, 2009. "Multi-criteria decision making on strategic selection of wind farms," Renewable Energy, Elsevier, vol. 34(1), pages 120-126.
    3. Shyuan Cheng & Yaqing Jin & Leonardo P. Chamorro, 2020. "Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms," Energies, MDPI, vol. 13(7), pages 1-13, April.
    4. Asadi, Meysam & Pourhossein, Kazem, 2021. "Wind farm site selection considering turbulence intensity," Energy, Elsevier, vol. 236(C).
    5. Nicolas Tobin & Leonardo P. Chamorro, 2017. "Windbreak Effects Within Infinite Wind Farms," Energies, MDPI, vol. 10(8), pages 1-12, August.
    6. Zendehbad, M. & Chokani, N. & Abhari, R.S., 2016. "Impact of forested fetch on energy yield and maintenance of wind turbines," Renewable Energy, Elsevier, vol. 96(PA), pages 548-558.
    7. Nicolas Tobin & Ali M. Hamed & Leonardo P. Chamorro, 2015. "An Experimental Study on the Effects ofWinglets on the Wake and Performance of a ModelWind Turbine," Energies, MDPI, vol. 8(10), pages 1-18, October.
    8. Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eslam S. Abdelghany & Hesham H. Sarhan & Raed Alahmadi & Mohamed B. Farghaly, 2023. "Study the Effect of Winglet Height Length on the Aerodynamic Performance of Horizontal Axis Wind Turbines Using Computational Investigation," Energies, MDPI, vol. 16(13), pages 1-20, July.
    2. Wei Zhang & Sifan Yang & Cheng Chen & Lang Li, 2023. "Analysis of the Effects of Fluctuating Wind on the Aerodynamic Performance of a Vertical-Axis Wind Turbine with Variable Pitch," Energies, MDPI, vol. 16(20), pages 1-21, October.
    3. Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    4. Taiwo Adedipe & Ashvinkumar Chaudhari & Antti Hellsten & Tuomo Kauranne & Heikki Haario, 2022. "Numerical Investigation on the Effects of Forest Heterogeneity on Wind-Turbine Wake," Energies, MDPI, vol. 15(5), pages 1-27, March.
    5. Yuan Yao & Guozhong Wang & Jinhui Fan, 2023. "WT-YOLOX: An Efficient Detection Algorithm for Wind Turbine Blade Damage Based on YOLOX," Energies, MDPI, vol. 16(9), pages 1-15, April.
    6. Jagdeep Singh & Jahrul M Alam, 2023. "Large-Eddy Simulation of Utility-Scale Wind Farm Sited over Complex Terrain," Energies, MDPI, vol. 16(16), pages 1-26, August.
    7. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuvel Joseph Aju & Dhanush Bhamitipadi Suresh & Yaqing Jin, 2020. "The Influence of Winglet Pitching on the Performance of a Model Wind Turbine: Aerodynamic Loads, Rotating Speed, and Wake Statistics," Energies, MDPI, vol. 13(19), pages 1-15, October.
    2. Buen Zhang & Shyuan Cheng & Fanghan Lu & Yuan Zheng & Leonardo P. Chamorro, 2020. "Impact of Topographic Steps in the Wake and Power of a Wind Turbine: Part A—Statistics," Energies, MDPI, vol. 13(23), pages 1-14, December.
    3. Zhang, Buen & Jin, Yaqing & Cheng, Shyuan & Zheng, Yuan & Chamorro, Leonardo P., 2022. "On the dynamics of a model wind turbine under passive tower oscillations," Applied Energy, Elsevier, vol. 311(C).
    4. Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
    5. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    6. Shyuan Cheng & Yaqing Jin & Leonardo P. Chamorro, 2020. "Wind Turbines with Truncated Blades May Be a Possibility for Dense Wind Farms," Energies, MDPI, vol. 13(7), pages 1-13, April.
    7. Huiwen Liu & Imran Hayat & Yaqing Jin & Leonardo P. Chamorro, 2018. "On the Evolution of the Integral Time Scale within Wind Farms," Energies, MDPI, vol. 11(1), pages 1-11, January.
    8. Yunliang Li & Zhaobin Li & Zhideng Zhou & Xiaolei Yang, 2023. "Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    9. Fu, Shifeng & Zhang, Buen & Zheng, Yuan & Chamorro, Leonardo P., 2020. "In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays," Applied Energy, Elsevier, vol. 269(C).
    10. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    11. Khaled, Mohamed & Ibrahim, Mostafa M. & Abdel Hamed, Hesham E. & AbdelGwad, Ahmed F., 2019. "Investigation of a small Horizontal–Axis wind turbine performance with and without winglet," Energy, Elsevier, vol. 187(C).
    12. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    13. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    14. Navid Belvasi & Boris Conan & Benyamin Schliffke & Laurent Perret & Cian Desmond & Jimmy Murphy & Sandrine Aubrun, 2022. "Far-Wake Meandering of a Wind Turbine Model with Imposed Motions: An Experimental S-PIV Analysis," Energies, MDPI, vol. 15(20), pages 1-17, October.
    15. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    16. Aju, Emmanuvel Joseph & Kumar, Devesh & Leffingwell, Melissa & Rotea, Mario A. & Jin, Yaqing, 2023. "The influence of yaw misalignment on turbine power output fluctuations and unsteady aerodynamic loads within wind farms," Renewable Energy, Elsevier, vol. 215(C).
    17. Barbarić, Marina & Batistić, Ivan & Guzović, Zvonimir, 2022. "Numerical study of the flow field around hydrokinetic turbines with winglets on the blades," Renewable Energy, Elsevier, vol. 192(C), pages 692-704.
    18. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    19. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    20. Sliz-Szkliniarz, B. & Eberbach, J. & Hoffmann, B. & Fortin, M., 2019. "Assessing the cost of onshore wind development scenarios: Modelling of spatial and temporal distribution of wind power for the case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 514-531.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7204-:d:670428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.