IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3776-d1135416.html
   My bibliography  Save this article

WT-YOLOX: An Efficient Detection Algorithm for Wind Turbine Blade Damage Based on YOLOX

Author

Listed:
  • Yuan Yao

    (School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Guozhong Wang

    (School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

  • Jinhui Fan

    (School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
    Shanghai Media Group, Shanghai 200041, China)

Abstract

Wind turbine blades will suffer various surface damages due to their operating environment and high-speed rotation. Accurate identification in the early stage of damage formation is crucial. The damage detection of wind turbine blades is a primarily manual operation, which has problems such as high cost, low efficiency, intense subjectivity, and high risk. The rise of deep learning provides a new method for detecting wind turbine blade damage. However, in detecting wind turbine blade damage in general network models, there will be an insufficient fusion of multiscale small target features. This paper proposes a lightweight cascaded feature fusion neural network model based on YOLOX. Firstly, the lightweight area of the backbone feature extraction network concerning the RepVGG network structure is enhanced, improving the model’s inference speed. Second, a cascaded feature fusion module is designed to cascade and interactively fuse multilevel features to enhance the small target area features and the model’s feature perception capabilities for multiscale target damage. The focal loss is introduced in the post-processing stage to enhance the network’s ability to learn complex positive sample damages. The detection accuracy of the improved algorithm is increased by 2.95%, the mAP can reach 94.29% in the self-made dataset, and the recall rate and detection speed are slightly improved. The experimental results show that the algorithm can autonomously learn the blade damage features from the wind turbine blade images collected in the actual scene, achieve the automatic detection, location, and classification of wind turbine blade damage, and promote the detection of wind turbine blade damage towards automation, rapidity, and low-cost development.

Suggested Citation

  • Yuan Yao & Guozhong Wang & Jinhui Fan, 2023. "WT-YOLOX: An Efficient Detection Algorithm for Wind Turbine Blade Damage Based on YOLOX," Energies, MDPI, vol. 16(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3776-:d:1135416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3776/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3776/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    2. Shyuan Cheng & Mahmoud Elgendi & Fanghan Lu & Leonardo P. Chamorro, 2021. "On the Wind Turbine Wake and Forest Terrain Interaction," Energies, MDPI, vol. 14(21), pages 1-13, November.
    3. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingwei Lei & Xingfen Wang & Meihua Wang & Yitao Cheng, 2024. "Improved YOLOv5 Based on Multi-Strategy Integration for Multi-Category Wind Turbine Surface Defect Detection," Energies, MDPI, vol. 17(8), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    2. Chunsheng Hu & Yong Zhao & Fangjuan Cheng & Zhiping Li, 2023. "Multi-Object Detection Algorithm in Wind Turbine Nacelles Based on Improved YOLOX-Nano," Energies, MDPI, vol. 16(3), pages 1-13, January.
    3. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    4. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    5. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    6. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    7. Hongsheng Su & Yifan Zhao & Xueqian Wang, 2023. "Analysis of a State Degradation Model and Preventive Maintenance Strategies for Wind Turbine Generators Based on Stochastic Differential Equations," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    8. Bon-Yong Koo & Dae-Yi Jung, 2019. "A Comparative Study on Primary Bearing Rating Life of a 5-MW Two-Blade Wind Turbine System Based on Two Different Control Domains," Energies, MDPI, vol. 12(13), pages 1-16, July.
    9. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    10. A. G. Olabi & Khaled Obaideen & Mohammad Ali Abdelkareem & Maryam Nooman AlMallahi & Nabila Shehata & Abdul Hai Alami & Ayman Mdallal & Asma Ali Murah Hassan & Enas Taha Sayed, 2023. "Wind Energy Contribution to the Sustainable Development Goals: Case Study on London Array," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    11. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    12. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    13. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    14. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    15. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    16. Chen, Jinglong & Pan, Jun & Li, Zipeng & Zi, Yanyang & Chen, Xuefeng, 2016. "Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals," Renewable Energy, Elsevier, vol. 89(C), pages 80-92.
    17. José Ramón del Álamo & Mario J. Duran & Francisco J. Muñoz, 2020. "Analysis of the Gearbox Oil Maintenance Procedures in Wind Energy," Energies, MDPI, vol. 13(13), pages 1-18, July.
    18. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    19. Yang, Chunzhen & Liu, Jingquan & Zeng, Yuyun & Xie, Guangyao, 2019. "Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model," Renewable Energy, Elsevier, vol. 133(C), pages 433-441.
    20. Wei-Hua Hu & De-Hui Tang & Ming Wang & Jun-Le Liu & Zuo-Hua Li & Wei Lu & Jun Teng & Samir Said & Rolf. G. Rohrmann, 2020. "Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis," Energies, MDPI, vol. 13(3), pages 1-21, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3776-:d:1135416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.