IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp293-306.html
   My bibliography  Save this article

Regional suitability analysis of the rural biogas power generation industry:A case of China

Author

Listed:
  • Zhang, Lihui
  • Wang, Jianing
  • Li, Songrui

Abstract

Biogas power generation has environmental and social benefits; however, its industrialization is lacking in China. Regional suitability for the biogas power generation industry must be assessed to optimize its layout. First, a regional suitability evaluation index system for said industry was constructed, including resource, societal, and economic conditions, and environmental pressures. Next, a multilevel fuzzy comprehensive evaluation method for regional suitability was proposed; 31 provinces (cities) in China were divided into five grades. Finally, according to the matching degree of suitability and development levels, the 31 regions were divided into three categories, while corresponding policy recommendations were proposed. The rank distribution among regions was found to be unbalanced; there were significant differences in the grade evaluation results of each region under the four criteria layers. The eastern region was significantly superior to the western region. Henan and Hebei were the most suitable regions for development, whereas Ningxia, Hainan, Qinghai, and Tibet were not. Moreover, the suitability of the biogas power generation industry in most regions matched the development level, although not in Sichuan or Jiangsu. These results provide a basis for the government to formulate rural biogas power generation policies and promote sustainable development of the industry.

Suggested Citation

  • Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:293-306
    DOI: 10.1016/j.renene.2022.05.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122007145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
    2. Deng, Liangwei & Liu, Yi & Zheng, Dan & Wang, Lan & Pu, Xiaodong & Song, Li & Wang, Zhiyong & Lei, Yunhui & Chen, Ziai & Long, Yan, 2017. "Application and development of biogas technology for the treatment of waste in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 845-851.
    3. Ammenberg, Jonas & Feiz, Roozbeh, 2017. "Assessment of feedstocks for biogas production, part II—Results for strategic decision making," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 388-404.
    4. Walekhwa, Peter N. & Mugisha, Johnny & Drake, Lars, 2009. "Biogas energy from family-sized digesters in Uganda: Critical factors and policy implications," Energy Policy, Elsevier, vol. 37(7), pages 2754-2762, July.
    5. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    6. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    7. Xue, Shengrong & Song, Jinghui & Wang, Xiaojiao & Shang, Zezhou & Sheng, Chenjing & Li, Chongyuan & Zhu, Yufan & Liu, Jingyu, 2020. "A systematic comparison of biogas development and related policies between China and Europe and corresponding insights," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    8. Feiz, Roozbeh & Ammenberg, Jonas, 2017. "Assessment of feedstocks for biogas production, part I—A multi-criteria approach," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 373-387.
    9. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    10. Cheng Han & Shengbo Chen & Yan Yu & Zhengyuan Xu & Bingxue Zhu & Xitong Xu & Zibo Wang, 2021. "Evaluation of Agricultural Land Suitability Based on RS, AHP, and MEA: A Case Study in Jilin Province, China," Agriculture, MDPI, vol. 11(4), pages 1-23, April.
    11. Wang, Xiaojiao & Lu, Xingang & Yang, Gaihe & Feng, Yongzhong & Ren, Guangxin & Han, Xinhui, 2016. "Development process and probable future transformations of rural biogas in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 703-712.
    12. Kabir, Humayun & Yegbemey, Rosaine N. & Bauer, Siegfried, 2013. "Factors determinant of biogas adoption in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 881-889.
    13. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    14. Deng, Yimin & Dewil, Raf & Appels, Lise & Li, Shuo & Baeyens, Jan & Degrève, Jan & Wang, Guirong, 2021. "Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making," Renewable Energy, Elsevier, vol. 170(C), pages 800-810.
    15. Chang, I-Shin & Zhao, Ji & Yin, Xuefeng & Wu, Jing & Jia, Zhibin & Wang, Lixin, 2011. "Comprehensive utilizations of biogas in Inner Mongolia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1442-1453, April.
    16. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    17. Yasar, Abdullah & Nazir, Saba & Tabinda, Amtul Bari & Nazar, Masooma & Rasheed, Rizwan & Afzaal, Muhammad, 2017. "Socio-economic, health and agriculture benefits of rural household biogas plants in energy scarce developing countries: A case study from Pakistan," Renewable Energy, Elsevier, vol. 108(C), pages 19-25.
    18. Abadi, Nigussie & Gebrehiwot, Kindeya & Techane, Ataklti & Nerea, Hailish, 2017. "Links between biogas technology adoption and health status of households in rural Tigray, Northern Ethiopia," Energy Policy, Elsevier, vol. 101(C), pages 284-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Jiazheng & Song, Junjie & Tang, Yong & Rui, Zhenhua & Wang, Yong & He, Youwei, 2023. "Well applicability assessment based on fuzzy theory for CO2 sequestration in depleted gas reservoirs," Renewable Energy, Elsevier, vol. 206(C), pages 239-250.
    2. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Yasmin, Nazia & Grundmann, Philipp, 2019. "Adoption and diffusion of renewable energy – The case of biogas as alternative fuel for cooking in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 255-264.
    3. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Ni, Ji-Qin, 2024. "A review of household and industrial anaerobic digestion in Asia: Biogas development and safety incidents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Ahmad, Munir & Wu, Yiyun, 2022. "Household-based factors affecting uptake of biogas plants in Bangladesh: Implications for sustainable development," Renewable Energy, Elsevier, vol. 194(C), pages 858-867.
    6. Samira Salam & Rehena Parveen & S.M. Nasim Azad & Md. Abdus Salam, 2020. "Understanding the Performance of Domestic Biodigesters in Bangladesh: A Study from Household Level Survey," Business and Management Studies, Redfame publishing, vol. 6(2), pages 2739-2739, December.
    7. Abbas, Tahir & Ali, Ghaffar & Adil, Sultan Ali & Bashir, Muhammad Khalid & Kamran, Muhammad Asif, 2017. "Economic analysis of biogas adoption technology by rural farmers: The case of Faisalabad district in Pakistan," Renewable Energy, Elsevier, vol. 107(C), pages 431-439.
    8. Zeng, Yangmei & Zhang, Junbiao & He, Ke, 2019. "Effects of conformity tendencies on households’ willingness to adopt energy utilization of crop straw: Evidence from biogas in rural China," Renewable Energy, Elsevier, vol. 138(C), pages 573-584.
    9. Ahmad, Munir & Jabeen, Gul, 2023. "Biogas technology adoption and household welfare perspectives for sustainable development," Energy Policy, Elsevier, vol. 181(C).
    10. Novice Patrick Bakehe, 2021. "What drives biogas adoption in rural Lesotho?," African Development Review, African Development Bank, vol. 33(2), pages 357-367, June.
    11. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    12. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Ahmad, Munir & Irfan, Muhammad, 2021. "Analysis on barriers to biogas dissemination in Rwanda: AHP approach," Renewable Energy, Elsevier, vol. 163(C), pages 1127-1137.
    13. Luo, Erga & Yan, Ru & He, Yaping & Han, Zhen & Feng, Yiyu & Qian, Wenrong & Li, Jinkai, 2024. "Does biogas industrial policy promote the industrial transformation?," Resources Policy, Elsevier, vol. 88(C).
    14. Ricardo Situmeang & Jana Mazancová & Hynek Roubík, 2022. "Technological, Economic, Social and Environmental Barriers to Adoption of Small-Scale Biogas Plants: Case of Indonesia," Energies, MDPI, vol. 15(14), pages 1-16, July.
    15. Jan, Muhammad Zain & Ullah, Kafait & Abbas, Faisal & Khalid, Hassan Abdullah & Bajwa, Tariq M., 2023. "Barriers to the adoption of social welfare measures in the electricity tariff structure of developing countries: A case of Pakistan," Energy Policy, Elsevier, vol. 179(C).
    16. Hossain, Md. Sanowar & Masuk, Nahid Imtiaz & Das, Barun K. & Das, Arnob & Kibria, Md. Golam & Chowdhury, Miftahul Mobin & Shozib, Imtiaz Ahmed, 2023. "Theoretical estimation of energy potential and environmental emissions mitigation for major livestock manure in Bangladesh," Renewable Energy, Elsevier, vol. 217(C).
    17. Kelebe, Haftu Etsay & Ayimut, Kiros Meles & Berhe, Gebresilasse Hailu & Hintsa, Kidane, 2017. "Determinants for adoption decision of small scale biogas technology by rural households in Tigray, Ethiopia," Energy Economics, Elsevier, vol. 66(C), pages 272-278.
    18. Wang, Xuemei & Yan, Rui & Zhao, Yuying & Cheng, Shikun & Han, Yanzhao & Yang, Shuo & Cai, Di & Mang, Heinz-Peter & Li, Zifu, 2020. "Biogas standard system in China," Renewable Energy, Elsevier, vol. 157(C), pages 1265-1273.
    19. Jiapei Wei & Gefu Liang & James Alex & Tongchao Zhang & Chunbo Ma, 2020. "Research Progress of Energy Utilization of Agricultural Waste in China: Bibliometric Analysis by Citespace," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    20. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:293-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.