IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp135-146.html
   My bibliography  Save this article

How to measure flexibility – Performance indicators for demand driven power generation from biogas plants

Author

Listed:
  • Dotzauer, Martin
  • Pfeiffer, Diana
  • Lauer, Markus
  • Pohl, Marcel
  • Mauky, Eric
  • Bär, Katharina
  • Sonnleitner, Matthias
  • Zörner, Wilfried
  • Hudde, Jessica
  • Schwarz, Björn
  • Faßauer, Burkhardt
  • Dahmen, Markus
  • Rieke, Christian
  • Herbert, Johannes
  • Thrän, Daniela

Abstract

Flexible power provision from biogas can significantly contribute to energy systems with high shares of renewables. However, the characteristics and demands for this flexibility are not clearly defined or measured. In this paper eight indicators are defined to shape “flexibility” and perform a downstream investigation of eight research projects focusing on flexible energy provision of biogas plants. The indicators are structured in three dimensions (1) velocity (ramps) by which the system can be modulated, (2) power range (bandwidth) and (3) duration for specific load conditions. Based on these indicators bottlenecks for the flexibility potential were identified. One crucial result shows that short-term flexibility of biogas plants is mainly driven by properties of the combined heat and power unit (velocity and bandwidth). The long-term flexibility depends mainly on gas storage, mode of operation and ability for modulation of the target gas production.

Suggested Citation

  • Dotzauer, Martin & Pfeiffer, Diana & Lauer, Markus & Pohl, Marcel & Mauky, Eric & Bär, Katharina & Sonnleitner, Matthias & Zörner, Wilfried & Hudde, Jessica & Schwarz, Björn & Faßauer, Burkhardt & Dah, 2019. "How to measure flexibility – Performance indicators for demand driven power generation from biogas plants," Renewable Energy, Elsevier, vol. 134(C), pages 135-146.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:135-146
    DOI: 10.1016/j.renene.2018.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    2. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes: A case study of the German market premium," UFZ Discussion Papers 4/2013, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Szarka, Nora & Scholwin, Frank & Trommler, Marcus & Fabian Jacobi, H. & Eichhorn, Marcus & Ortwein, Andreas & Thrän, Daniela, 2013. "A novel role for bioenergy: A flexible, demand-oriented power supply," Energy, Elsevier, vol. 61(C), pages 18-26.
    4. Schill, Wolf-Peter, 2014. "Residual load, renewable surplus generation and storage requirements in Germany," Energy Policy, Elsevier, vol. 73(C), pages 65-79.
    5. Hahn, Henning & Krautkremer, Bernd & Hartmann, Kilian & Wachendorf, Michael, 2014. "Review of concepts for a demand-driven biogas supply for flexible power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 383-393.
    6. Schill, Wolf-Peter & Zerrahn, Alexander, 2018. "Long-run power storage requirements for high shares of renewables: Results and sensitivities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 156-171.
    7. Szarka, Nora & Eichhorn, Marcus & Kittler, Ronny & Bezama, Alberto & Thrän, Daniela, 2017. "Interpreting long-term energy scenarios and the role of bioenergy in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1222-1233.
    8. Rieke, C. & Stollenwerk, D. & Dahmen, M. & Pieper, M., 2018. "Modeling and optimization of a biogas plant for a demand-driven energy supply," Energy, Elsevier, vol. 145(C), pages 657-664.
    9. Hirth, Lion & Ziegenhagen, Inka, 2015. "Balancing power and variable renewables: Three links," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1035-1051.
    10. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes—A case study of the German market premium," Energy Policy, Elsevier, vol. 61(C), pages 599-609.
    11. Hake, Jürgen-Friedrich & Fischer, Wolfgang & Venghaus, Sandra & Weckenbrock, Christoph, 2015. "The German Energiewende – History and status quo," Energy, Elsevier, vol. 92(P3), pages 532-546.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamila Klimek & Magdalena Kapłan & Serhiy Syrotyuk & Nikolay Bakach & Nikolay Kapustin & Ryszard Konieczny & Jakub Dobrzyński & Kinga Borek & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & Grzeg, 2021. "Investment Model of Agricultural Biogas Plants for Individual Farms in Poland," Energies, MDPI, vol. 14(21), pages 1-30, November.
    2. Jan Martin Zepter & Jan Engelhardt & Tatiana Gabderakhmanova & Mattia Marinelli, 2021. "Empirical Validation of a Biogas Plant Simulation Model and Analysis of Biogas Upgrading Potentials," Energies, MDPI, vol. 14(9), pages 1-19, April.
    3. Pochwatka, Patrycja & Rozakis, Stelios & Kowalczyk-Juśko, Alina & Czekała, Wojciech & Qiao, Wei & Nägele, Hans-Joachim & Janczak, Damian & Mazurkiewicz, Jakub & Mazur, Andrzej & Dach, Jacek, 2023. "The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm," Energy, Elsevier, vol. 283(C).
    4. Garcet, J. & De Meulenaere, R. & Blondeau, J., 2022. "Enabling flexible CHP operation for grid support by exploiting the DHN thermal inertia," Applied Energy, Elsevier, vol. 316(C).
    5. Schipfer, F. & Mäki, E. & Schmieder, U. & Lange, N. & Schildhauer, T. & Hennig, C. & Thrän, D., 2022. "Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Lauer, Markus & Leprich, Uwe & Thrän, Daniela, 2020. "Economic assessment of flexible power generation from biogas plants in Germany's future electricity system," Renewable Energy, Elsevier, vol. 146(C), pages 1471-1485.
    7. Selleneit, Volker & Stöckl, Martin & Holzhammer, Uwe, 2020. "System efficiency – Methodology for rating of industrial utilities in electricity grids with a high share of variable renewable energies – A first approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    8. Leonardo Nibbi & Paolo Sospiro & Maurizio De Lucia & Cheng-Cheng Wu, 2022. "Improving Pumped Hydro Storage Flexibility in China: Scenarios for Advanced Solutions Adoption and Policy Recommendations," Energies, MDPI, vol. 15(21), pages 1-25, October.
    9. Danijel Topić & Marinko Barukčić & Dražen Mandžukić & Cecilia Mezei, 2020. "Optimization Model for Biogas Power Plant Feedstock Mixture Considering Feedstock and Transportation Costs Using a Differential Evolution Algorithm," Energies, MDPI, vol. 13(7), pages 1-22, April.
    10. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Paolo Sospiro & Leonardo Nibbi & Marco Ciro Liscio & Maurizio De Lucia, 2021. "Cost–Benefit Analysis of Pumped Hydroelectricity Storage Investment in China," Energies, MDPI, vol. 14(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    2. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    3. Yiyun Liu & Jun Wu & Jianjun Li & Jingjing Huang, 2023. "The Diffusion Rule of Demand-Oriented Biogas Supply in Distributed Renewable Energy System: An Evolutionary Game-Based Approach," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    4. Zipp, Alexander, 2017. "The marketability of variable renewable energy in liberalized electricity markets – An empirical analysis," Renewable Energy, Elsevier, vol. 113(C), pages 1111-1121.
    5. Lauer, Markus & Leprich, Uwe & Thrän, Daniela, 2020. "Economic assessment of flexible power generation from biogas plants in Germany's future electricity system," Renewable Energy, Elsevier, vol. 146(C), pages 1471-1485.
    6. Markus Lauer & Daniela Thrän, 2018. "Flexible Biogas in Future Energy Systems—Sleeping Beauty for a Cheaper Power Generation," Energies, MDPI, vol. 11(4), pages 1-24, March.
    7. Philip Tafarte & Marcus Eichhorn & Daniela Thrän, 2019. "Capacity Expansion Pathways for a Wind and Solar Based Power Supply and the Impact of Advanced Technology—A Case Study for Germany," Energies, MDPI, vol. 12(2), pages 1-23, January.
    8. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland & Trømborg, Erik & Rørstad, Per Kristian, 2020. "The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector," Applied Energy, Elsevier, vol. 274(C).
    9. Karsten Neuhoff & Nils May & Jörn C. Richstein, 2018. "Renewable Energy Policy in the Age of Falling Technology Costs," Discussion Papers of DIW Berlin 1746, DIW Berlin, German Institute for Economic Research.
    10. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    11. Marques, António Cardoso & Fuinhas, José Alberto & Menegaki, Angeliki N., 2014. "Interactions between electricity generation sources and economic activity in Greece: A VECM approach," Applied Energy, Elsevier, vol. 132(C), pages 34-46.
    12. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    13. Chaves-Ávila, José Pablo & van der Veen, Reinier A.C. & Hakvoort, Rudi A., 2014. "The interplay between imbalance pricing mechanisms and network congestions – Analysis of the German electricity market," Utilities Policy, Elsevier, vol. 28(C), pages 52-61.
    14. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    15. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    16. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    18. Ländner, Eva-Maria & Märtz, Alexandra & Schöpf, Michael & Weibelzahl, Martin, 2019. "From energy legislation to investment determination: Shaping future electricity markets with different flexibility options," Energy Policy, Elsevier, vol. 129(C), pages 1100-1110.
    19. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    20. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:135-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.