IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v123y2018icp162-190.html
   My bibliography  Save this article

Business models and innovativeness of potential renewable energy projects in Africa

Author

Listed:
  • Budzianowski, Wojciech M.
  • Nantongo, Irene
  • Bamutura, Cleus
  • Rwema, Michel
  • Lyambai, Martin
  • Abimana, Colette
  • Akumu, Eric O.
  • Alokore, Yunus
  • Babalola, Samuel O.
  • Gachuri, Amon K.K.
  • Hefney Diab, Mahmoud S.
  • Ituze, Gemma
  • Kiprono, Hillary
  • Kouakou, Gnamien C.
  • Kukeera, Tonny
  • Megne, Waffo B.
  • Muceka, Rolex
  • Mugumya, Andrew
  • Mwongereza, Jean d’Amour
  • Nwadiaru, Ogechi V.
  • Sow, Salif

Abstract

This study provides an overview of potential renewable energy (RE) projects for Africa. Pan African University master students were asked by their lecturer to characterize African projects they had in minds in uniform tables. Items of the project investment plan include project synopsis, the sponsors, market analysis and strategy, project scope, regulation and environmental information, project costs, financial projections, business model, and project innovativeness. Students' RE projects are assessed with emphasis put on employed business models and project innovativeness. Criticalities for the implementation of these projects are discussed in African contexts providing outlook for future investment opportunities in the African continent. The work provides insights from the local students' perspective for the various stakeholders interested in RE project investments in Africa. Useful suggestions formulated directly by young Africans are presented which may contribute to improved risks management when these or other potential RE projects will be deployed. Inputs from local people on how they understand the process of implementing RE projects in Africa might be interesting for investors seeking information about suitable ways for RE project deployment. Students characterize local contexts and identify numerous barriers for deployment of RE systems in Africa. Overall, this study explains the potential lying in renewable energy harvesting in Africa, seeks to emphasize major barriers for implementation of RE projects as well as investigates investment opportunities to implement economically feasible RE projects for cleaner and climate friendly energy future of this continent.

Suggested Citation

  • Budzianowski, Wojciech M. & Nantongo, Irene & Bamutura, Cleus & Rwema, Michel & Lyambai, Martin & Abimana, Colette & Akumu, Eric O. & Alokore, Yunus & Babalola, Samuel O. & Gachuri, Amon K.K. & Hefney, 2018. "Business models and innovativeness of potential renewable energy projects in Africa," Renewable Energy, Elsevier, vol. 123(C), pages 162-190.
  • Handle: RePEc:eee:renene:v:123:y:2018:i:c:p:162-190
    DOI: 10.1016/j.renene.2018.02.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118301824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.02.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    2. Budzianowski, Wojciech M. & Budzianowska, Dominika A., 2015. "Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations," Energy, Elsevier, vol. 88(C), pages 658-666.
    3. Musango, Josephine K. & Brent, Alan C. & Bassi, Andrea M., 2014. "Modelling the transition towards a green economy in South Africa," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 257-273.
    4. Budzianowski, Wojciech M., 2012. "Negative carbon intensity of renewable energy technologies involving biomass or carbon dioxide as inputs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6507-6521.
    5. Budzianowski, Wojciech M., 2017. "High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 793-804.
    6. Richter, Mario, 2012. "Utilities’ business models for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2483-2493.
    7. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    8. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    9. Peter Meier & Maria Vagliasindi & Mudassar Imran & Anton Eberhard & Tilak Siyambalapitiya, 2015. "The Design and Sustainability of Renewable Energy Incentives : An Economic Analysis," World Bank Publications - Books, The World Bank Group, number 20524, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsin, Muhammad & Taghizadeh-Hesary, Farhad & Iqbal, Nadeem & Saydaliev, Hayot Berk, 2022. "The role of technological progress and renewable energy deployment in green economic growth," Renewable Energy, Elsevier, vol. 190(C), pages 777-787.
    2. Ogundiran Soumonni & Kalu Ojah, 2022. "Innovative and mission‐oriented financing of renewable energy in Sub‐Saharan Africa: A review and conceptual framework," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    3. Rosa, Carmen Brum & Rigo, Paula Donaduzzi & Rediske, Graciele & Moccellin, Ana Paula & Mairesse Siluk, Julio Cezar & Michels, Leandro, 2021. "How to measure organizational performance of distributed generation in electric utilities? The Brazilian case," Renewable Energy, Elsevier, vol. 169(C), pages 191-203.
    4. van Vuuren, Dirk Johan & Marnewick, Annlizé & Pretorius, Jan Harm C., 2019. "A proposed simulation-based theoretical preconstruction process: The case of solar photovoltaic technology in South African shopping centres," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Agyekum, Ephraim Bonah & Amjad, Fahd & Mohsin, Muhammad & Ansah, Michael Nii Sanka, 2021. "A bird's eye view of Ghana's renewable energy sector environment: A Multi-Criteria Decision-Making approach," Utilities Policy, Elsevier, vol. 70(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toczyłowska-Mamińska, Renata, 2017. "Limits and perspectives of pulp and paper industry wastewater treatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 764-772.
    2. Budzianowski, Wojciech M., 2017. "High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 793-804.
    3. Saeidi, Samrand & Najari, Sara & Fazlollahi, Farhad & Nikoo, Maryam Khoshtinat & Sefidkon, Fatemeh & Klemeš, Jiří Jaromír & Baxter, Larry L., 2017. "Mechanisms and kinetics of CO2 hydrogenation to value-added products: A detailed review on current status and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1292-1311.
    4. Budzianowski, Wojciech M. & Postawa, Karol, 2017. "Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 852-868.
    5. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    6. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
    7. Eitan, Avri & Herman, Lior & Fischhendler, Itay & Rosen, Gillad, 2019. "Community–private sector partnerships in renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 95-104.
    8. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    9. Manhongo, T.T. & Chimphango, A.F.A. & Thornley, P. & Röder, M., 2022. "Current status and opportunities for fruit processing waste biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    10. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    11. El Khaled, D. & Novas, N. & Gázquez, J.A. & García, R.M. & Manzano-Agugliaro, F., 2016. "Alcohols and alcohols mixtures as liquid biofuels: A review of dielectric properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 556-571.
    12. Kumari, Rajni & Kumar, Manish & Vivekanand, V. & Pareek, Nidhi, 2023. "Chitin biorefinery: A narrative and prophecy of crustacean shell waste sustainable transformation into bioactives and renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    14. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    15. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    16. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    18. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    19. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    20. Lidia Lombardi & Barbara Mendecka & Simone Fabrizi, 2020. "Solar Integrated Anaerobic Digester: Energy Savings and Economics," Energies, MDPI, vol. 13(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:123:y:2018:i:c:p:162-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.