IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024008299.html
   My bibliography  Save this article

Structural causal modeling and STPA for the risk analysis of a rail system powered by H2 fuel

Author

Listed:
  • Riccardi, L.
  • Compare, M.
  • Mascherona, R.
  • Zio, E.

Abstract

Hydrogen fuel is being considered for rail transport applications. As a new technology, it poses risks. We propose to integrate System-Theoretic Process Analysis (STPA) with Structural Causal Models (SCMs) to analyze the risks of new technology systems. The integration allows leveraging the STPA capability of identifying hazardous scenarios for a system, also due to the socio-technical environment in which the system is operated, and the SCM capability of assisting experts in the understanding of risks and in their evaluation. The integration provides a flexible framework that is here applied for the analysis of the hazards and risks emerging from the introduction of hydrogen as a fuel for the rail industry.

Suggested Citation

  • Riccardi, L. & Compare, M. & Mascherona, R. & Zio, E., 2025. "Structural causal modeling and STPA for the risk analysis of a rail system powered by H2 fuel," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008299
    DOI: 10.1016/j.ress.2024.110758
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024008299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110758?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Carlos Cinelli & Whitney Newey & Amit Sharma & Vasilis Syrgkanis, 2021. "Long Story Short: Omitted Variable Bias in Causal Machine Learning," Papers 2112.13398, arXiv.org, revised May 2024.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Read, G.J.M. & Naweed, A. & Salmon, P.M., 2019. "Complexity on the rails: A systems-based approach to understanding safety management in rail transport," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 352-365.
    5. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    6. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2017. "Portfolio optimization of safety measures for reducing risks in nuclear systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 20-29.
    7. Bjerga, Torbjørn & Aven, Terje & Zio, Enrico, 2016. "Uncertainty treatment in risk analysis of complex systems: The cases of STAMP and FRAM," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 203-209.
    8. Xie, Qimiao & Zhou, Tianyi & Wang, Changjian & Zhu, Xu & Ma, Chao & Zhang, Aifeng, 2024. "An integrated uncertainty analysis method for the risk assessment of hydrogen refueling stations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Ruiz-Tagle, Andres & Lopez-Droguett, Enrique & Groth, Katrina M., 2022. "A novel probabilistic approach to counterfactual reasoning in system safety," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Cheng, Tingting & Utne, Ingrid Bouwer & Wu, Bing & Wu, Qing, 2023. "A novel system-theoretic approach for human-system collaboration safety: Case studies on two degrees of autonomy for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    12. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    13. Bensaci, Chaima & Zennir, Youcef & Pomorski, Denis & Innal, Fares & Lundteigen, Mary Ann, 2023. "Collision hazard modeling and analysis in a multi-mobile robots system transportation task with STPA and SPN," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Shiokari, Megumi & Itoh, Hiroko & Yuzui, Tomohiro & Ishimura, Eiko & Miyake, Rina & Kudo, Junichi & Kawashima, Sonoko, 2024. "Structure model-based hazard identification method for autonomous ships," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Zheng, Xiangyu & Liu, Qi & Li, Yufeng & Wang, Bo & Qin, Wutao, 2025. "Safety risk assessment for connected and automated vehicles: Integrating FTA and CM-improved AHP," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    4. Geonwoo Kim & Suyong Song, 2024. "Double/Debiased CoCoLASSO of Treatment Effects with Mismeasured High-Dimensional Control Variables," Papers 2408.14671, arXiv.org.
    5. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    6. Elek, Péter & Bíró, Anikó, 2021. "Regional differences in diabetes across Europe – regression and causal forest analyses," Economics & Human Biology, Elsevier, vol. 40(C).
    7. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    8. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Bokelmann, Björn & Lessmann, Stefan, 2024. "Improving uplift model evaluation on randomized controlled trial data," European Journal of Operational Research, Elsevier, vol. 313(2), pages 691-707.
    10. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    11. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    12. Wu, Guojun & Song, Ge & Lv, Xiaoxiang & Luo, Shikai & Shi, Chengchun & Zhu, Hongtu, 2023. "DNet: distributional network for distributional individualized treatment effects," LSE Research Online Documents on Economics 122895, London School of Economics and Political Science, LSE Library.
    13. Black, Dan A. & Grogger, Jeffrey & Kirchmaier, Tom & Sanders, Koen, 2023. "Criminal charges, risk assessment and violent recidivism in cases of domestic abuse," LSE Research Online Documents on Economics 121374, London School of Economics and Political Science, LSE Library.
    14. Augusto Cerqua & Marco Letta & Gabriele Pinto, 2024. "On the (Mis)Use of Machine Learning with Panel Data," Papers 2411.09218, arXiv.org, revised May 2025.
    15. Krikamol Muandet & Wittawat Jitkrittum & Jonas Kubler, 2020. "Kernel Conditional Moment Test via Maximum Moment Restriction," Papers 2002.09225, arXiv.org, revised Jun 2020.
    16. Krekel, Christian & Srisuma, Sorawoot, 2024. "Talking Therapy: Impacts of a Nationwide Mental Health Service in England," IZA Discussion Papers 16839, Institute of Labor Economics (IZA).
    17. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    19. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    20. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024008299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.