IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023000534.html
   My bibliography  Save this article

Collision hazard modeling and analysis in a multi-mobile robots system transportation task with STPA and SPN

Author

Listed:
  • Bensaci, Chaima
  • Zennir, Youcef
  • Pomorski, Denis
  • Innal, Fares
  • Lundteigen, Mary Ann

Abstract

This paper investigates the ability to use complex multi-mobile robotic systems in risky and dynamic environments, such as industrial plants and laboratories, with the presence of the human factor. More specifically, it presents an approach to analyze the dominant risk, extract, model and quantify the hazard scenarios, then propose requirements using the combination between two methods: System Theoretic Process Analysis (STPA) and Stochastic Petri Nets (SPN). This approach is demonstrated with a case study related to a chemical transportation task within a miniature analysis laboratory in oil and gas industry. The main purposes of this article are: to investigate how the risk and safety of these systems should be managed, to create a framework for modeling collision hazard scenarios, further a Monte Carlo simulation is performed to quantify the collision frequency and unavailability. In addition, to generate the required constraints and requirements in order to improve the safe operation of robots within the laboratory.

Suggested Citation

  • Bensaci, Chaima & Zennir, Youcef & Pomorski, Denis & Innal, Fares & Lundteigen, Mary Ann, 2023. "Collision hazard modeling and analysis in a multi-mobile robots system transportation task with STPA and SPN," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000534
    DOI: 10.1016/j.ress.2023.109138
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109138?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Xiyun Yang & Jinxia Li & Wei Liu & Peng Guo, 2011. "Petri Net Model and Reliability Evaluation for Wind Turbine Hydraulic Variable Pitch Systems," Energies, MDPI, vol. 4(6), pages 1-20, June.
    3. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Li, Xiao-Yang & Liu, Yue & Lin, Yan-Hui & Xiao, Liang-Hua & Zio, Enrico & Kang, Rui, 2021. "A generalized petri net-based modeling framework for service reliability evaluation and management of cloud data centers," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Juntao Zhang & Hyungju Kim & Yiliu Liu & Mary Ann Lundteigen, 2019. "Combining system-theoretic process analysis and availability assessment: A subsea case study," Journal of Risk and Reliability, , vol. 233(4), pages 520-536, August.
    7. Signoret, Jean-Pierre & Dutuit, Yves & Cacheux, Pierre-Joseph & Folleau, Cyrille & Collas, Stéphane & Thomas, Philippe, 2013. "Make your Petri nets understandable: Reliability block diagrams driven Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 61-75.
    8. Liu, Shuanglei & Li, Weijun & Gao, Peng & Sun, Yibo, 2022. "Modeling and performance analysis of gas leakage emergency disposal process in gas transmission station based on Stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Chuan Wang & Jun Gou & Yingcheng Tian & Hao Jin & Chao Yu & Yupeng Liu & Jiajun Ma & Yong Xia, 2022. "Reliability and availability evaluation of subsea high integrity pressure protection system using stochastic Petri net," Journal of Risk and Reliability, , vol. 236(3), pages 508-521, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuheng Zhong & Jinping Du & Xidi Jiang, 2023. "Analysis of Energy Laboratory Safety Management in China Based on the System-Theoretic Accident Model and Processes/System Theoretic Process Analysis STAMP/STPA Model," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    2. Chen, Jiayu. & Yao, Boqing & Lu, Qinhua & Wang, Xuhang & Yu, Pingchao & Ge, Hongjuan, 2024. "A safety dynamic evaluation method for missile mission based on multi-layered safety control structure model," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Zhen & Dong, Xiaobin & Guo, Li, 2023. "Scenario inference model of urban metro system cascading failure under extreme rainfall conditions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Wang, Rongxi & Li, Yufan & Xu, Jinjin & Wang, Zhen & Gao, Jianmin, 2022. "F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Tobi Elusakin & Mahmood Shafiee & Tosin Adedipe & Fateme Dinmohammadi, 2021. "A Stochastic Petri Net Model for O&M Planning of Floating Offshore Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-18, February.
    4. Diao, Xiaoxu & Zhao, Yunfei & Smidts, Carol & Vaddi, Pavan Kumar & Li, Ruixuan & Lei, Hangtian & Chakhchoukh, Yacine & Johnson, Brian & Blanc, Katya Le, 2024. "Dynamic probabilistic risk assessment for electric grid cybersecurity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Liu, Qiong & Guo, Kai & Wu, Xianguo & Xiao, Zhonghua & Zhang, Limao, 2024. "Simulation-based rescue plan modeling and performance assessment towards resilient metro systems under emergency," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    7. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Yu, Shui & Wang, Zhonglai & Zhang, Kewang, 2018. "Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 45-52.
    9. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    10. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Chelouati, Mohammed & Boussif, Abderraouf & Beugin, Julie & El Koursi, El-Miloudi, 2023. "Graphical safety assurance case using Goal Structuring Notation (GSN) — challenges, opportunities and a framework for autonomous trains," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    13. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    14. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Zhang, Huilong & Innal, Fares & Dufour, François & Dutuit, Yves, 2014. "Piecewise Deterministic Markov Processes based approach applied to an offshore oil production system," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 126-134.
    16. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    17. Waqar Ahmad & Osman Hasan & Sofiène Tahar & Mohamed Salah Hamdi, 2018. "Formal reliability analysis of oil and gas pipelines," Journal of Risk and Reliability, , vol. 232(3), pages 320-334, June.
    18. Nacef Tazi & Eric Châtelet & Youcef Bouzidi, 2017. "Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis," Energies, MDPI, vol. 10(3), pages 1-20, February.
    19. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    20. Tiwari, Ramji & Babu, N. Ramesh, 2016. "Recent developments of control strategies for wind energy conversion system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 268-285.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.