IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005562.html
   My bibliography  Save this article

Simulation-based rescue plan modeling and performance assessment towards resilient metro systems under emergency

Author

Listed:
  • Liu, Qiong
  • Guo, Kai
  • Wu, Xianguo
  • Xiao, Zhonghua
  • Zhang, Limao

Abstract

This paper proposes an intelligent fire emergency rescue analysis model in which the Hierarchical Timed Colored Petri nets (HTCPN) are incorporated to realize process control and coordination. Two indicators of places and transitions are employed to identify the key parts of HTCPN. A diagnostic analysis of group allocation is developed to determine the most appropriate way to deploy firefighters. A sensitivity analysis based on SHapley Additive exPlanations (SHAP) is conducted to identify the relevant importance of key factors on the performance of emergency. The proposed approach is applied at a Wuhan metro station. Results indicate that: (1) The firefighting and rescue part is of uppermost priority for emergency rescue time controlling; (2) Among all 19 influential factors, six key factors are tested as exerting more significant impacts on the performance of emergency; (3) The proposed model could significantly improve the efficiency of the emergency response, reducing the overall response time by 14.3%. The novelty of this research lies in the developed digital emergency rescue model, which is capable of taking uncertainties underlying complex coordination among various departments into account. The model has the potential to provide basic technology to support decision-making and help develop a human-centered emergency rescue system.

Suggested Citation

  • Liu, Qiong & Guo, Kai & Wu, Xianguo & Xiao, Zhonghua & Zhang, Limao, 2024. "Simulation-based rescue plan modeling and performance assessment towards resilient metro systems under emergency," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005562
    DOI: 10.1016/j.ress.2023.109642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Qiong & He, Renfei & Zhang, Limao, 2022. "Simulation-based multi-objective optimization for enhanced safety of fire emergency response in metro stations," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Masoomeh Zeinalnezhad & Abdoulmohammad Gholamzadeh Chofreh & Feybi Ariani Goni & Jiří Jaromír Klemeš & Emelia Sari, 2020. "Simulation and Improvement of Patients’ Workflow in Heart Clinics during COVID-19 Pandemic Using Timed Coloured Petri Nets," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    3. Chen Wang & Yanchao Song, 2020. "Fire Evacuation in Metro Stations: Modeling Research on the Effects of Two Key Parameters," Sustainability, MDPI, vol. 12(2), pages 1-11, January.
    4. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    5. Yan, R. & Dunnett, S.J. & Jackson, L.M., 2022. "Model-Based Research for Aiding Decision-Making During the Design and Operation of Multi-Load Automated Guided Vehicle Systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Li, Yulong & Lin, Jie & Zhang, Chi & Zhu, Huaxing & Zeng, Saixing & Sun, Chengshaung, 2022. "Joint optimization of structure and protection of interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    7. Guo, Kai & Zhang, Limao, 2022. "Adaptive multi-objective optimization for emergency evacuation at metro stations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Gama Dessavre, Dante & Ramirez-Marquez, Jose E. & Barker, Kash, 2016. "Multidimensional approach to complex system resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 34-43.
    9. He, Renfei & Zhang, Limao & Tiong, Robert L.K., 2023. "Flood risk assessment and mitigation for metro stations: An evidential-reasoning-based optimality approach considering uncertainty of subjective parameters," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jie & Wen, Weiping & Zhai, Changhai & Pei, Shunshun, 2024. "Post-earthquake functionality assessment for urban subway systems: Incorporating the combined effects of seismic performance of structural and non-structural systems and functional interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Liu, Qiong & He, Renfei & Zhang, Limao, 2022. "Simulation-based multi-objective optimization for enhanced safety of fire emergency response in metro stations," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Miguel Angel Ortíz-Barrios & Dayana Milena Coba-Blanco & Juan-José Alfaro-Saíz & Daniela Stand-González, 2021. "Process Improvement Approaches for Increasing the Response of Emergency Departments against the COVID-19 Pandemic: A Systematic Review," IJERPH, MDPI, vol. 18(16), pages 1-31, August.
    7. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    10. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Jie Zhang & Yifan Zhu & Tao Wang & Weiping Wang & Rui Wang & Xiaobo Li, 2022. "An Improved Intelligent Auction Mechanism for Emergency Material Delivery," Mathematics, MDPI, vol. 10(13), pages 1-30, June.
    12. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.
    13. Cai, Baoping & Zhang, Yanping & Wang, Haifeng & Liu, Yonghong & Ji, Renjie & Gao, Chuntan & Kong, Xiangdi & Liu, Jing, 2021. "Resilience evaluation methodology of engineering systems with dynamic-Bayesian-network-based degradation and maintenance," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    14. Araceli Zavala & David Nowicki & Jose Emmanuel Ramirez-Marquez, 2019. "Quantitative metrics to analyze supply chain resilience and associated costs," Journal of Risk and Reliability, , vol. 233(2), pages 186-199, April.
    15. Yodo, Nita & Wang, Pingfeng, 2018. "A control-guided failure restoration framework for the design of resilient engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 179-190.
    16. Valaei Sharif, Shahab & Habibi Moshfegh, Peyman & Kashani, Hamed, 2023. "Simulation modeling of operation and coordination of agencies involved in post-disaster response and recovery," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Xinghua Feng & Chunliang Xiu & Jianxin Li & Yexi Zhong, 2021. "Measuring the Evolution of Urban Resilience Based on the Exposure–Connectedness–Potential (ECP) Approach: A Case Study of Shenyang City, China," Land, MDPI, vol. 10(12), pages 1-22, November.
    18. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Agnieszka A. Tubis & Honorata Poturaj, 2022. "Risk Related to AGV Systems—Open-Access Literature Review," Energies, MDPI, vol. 15(23), pages 1-23, November.
    20. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.