IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023004854.html
   My bibliography  Save this article

Mapping the fire risk in buildings: A hybrid method of ASET-RSET concept and FED concept

Author

Listed:
  • Junfeng, Chen
  • Maohua, Zhong
  • Peiyun, Qiu
  • Zeng, Long
  • Jiacheng, Chen

Abstract

Fire is a critical threat to large buildings. With the fire smoke diffusion, the risk of injury and death exists over a wide area. To investigate the fire risk level of large buildings, a Risk Index is defined as the fractional effective dose at the moment of required safe egress time to model the maximum potential fire risk of an area. Then, the map-based method is adopted to acquire a Risk Index map for each fire scenario and a Risk Index scenario map for the whole building. Finally, the overall fire risk of a fire scenario and a building could be acquired by integrating the Risk Index in each area and the Risk Index scenario in each fire scenario. The platform of a subway station is taken as a case study to validate the applicability of the proposed method. The results indicate that the method provides a more detailed and accurate evaluation of fire risk distribution of each fire scenario and the whole platform. Besides, the proposed method can provide more flexible and adaptive evacuation strategy recommendations. The results could be used for future fire risk evaluation, worst fire scenario identification and evacuation strategy design in different buildings.

Suggested Citation

  • Junfeng, Chen & Maohua, Zhong & Peiyun, Qiu & Zeng, Long & Jiacheng, Chen, 2023. "Mapping the fire risk in buildings: A hybrid method of ASET-RSET concept and FED concept," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004854
    DOI: 10.1016/j.ress.2023.109571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Enze & Barker, Kash & Chen, Hong, 2022. "A multi-modal evacuation-based response strategy for mitigating disruption in an intercity railway system," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Xie, Qimiao & Wang, Jinhui & Lu, Shouxiang & Hensen, Jan L.M., 2016. "An optimization method for the distance between exits of buildings considering uncertainties based on arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 188-196.
    4. Guo, Kai & Zhang, Limao, 2022. "Adaptive multi-objective optimization for emergency evacuation at metro stations," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Liu, Qiong & He, Renfei & Zhang, Limao, 2022. "Simulation-based multi-objective optimization for enhanced safety of fire emergency response in metro stations," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Song, Chengcheng & Shao, Quan & Zhu, Pei & Dong, Min & Yu, Wenfei, 2023. "An emergency aircraft evacuation simulation considering passenger overtaking and luggage retrieval," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhenyu & Yao, Xiaowen & Xing, Zongyi & Zhou, Xinyi, 2024. "Understanding fire combustion characteristics and available safe egress time in underground metro trains: A simulation approach," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Shuai & Liu, Yugang & Lin, Yexin & Wang, Qiang & Yang, Hongtai & Chen, Bin, 2022. "Bridging strategy for the disruption of metro considering the reliability of transportation system: Metro and conventional bus network," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Hu, Jie & Wen, Weiping & Zhai, Changhai & Pei, Shunshun, 2024. "Post-earthquake functionality assessment for urban subway systems: Incorporating the combined effects of seismic performance of structural and non-structural systems and functional interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Liu, Qiong & Guo, Kai & Wu, Xianguo & Xiao, Zhonghua & Zhang, Limao, 2024. "Simulation-based rescue plan modeling and performance assessment towards resilient metro systems under emergency," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Shen, Yi & Yang, Huang & Ren, Gang & Ran, Bin, 2024. "Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Ding, Zhikun & Xu, Shengqu & Xie, Xiaofeng & Zheng, Kairui & Wang, Daochu & Fan, Jianhao & Li, Hong & Liao, Longhui, 2024. "A building information modeling-based fire emergency evacuation simulation system for large infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Lu, Qing-Chang & Li, Jing & Xu, Peng-Cheng & Zhang, Lei & Cui, Xin, 2024. "Modeling cascading failures of urban rail transit network based on passenger spatiotemporal heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Zhang, Lin & Xu, Min & Wang, Shuaian, 2023. "Quantifying bus route service disruptions under interdependent cascading failures of a multimodal public transit system based on an improved coupled map lattice model," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Meng, Yangyang & Zhao, Xiaofei & Liu, Jianzhong & Qi, Qingjie & Zhou, Wei, 2023. "Data-driven complexity analysis of weighted Shenzhen Metro network based on urban massive mobility in the rush hours," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    9. Liu, Enze & Barker, Kash & Chen, Hong, 2022. "A multi-modal evacuation-based response strategy for mitigating disruption in an intercity railway system," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Zhang, Lin & Wen, Huiying & Lu, Jian & Lei, Da & Li, Shubin & Ukkusuri, Satish V., 2022. "Exploring cascading reliability of multi-modal public transit network based on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    11. Barati, Hojjat & Yazici, Anil & Almotahari, Amirmasoud, 2024. "A methodology for ranking of critical links in transportation networks based on criticality score distributions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Zhang, Wenke & Zhang, Zhichao & Wang, Tao & Nong, Tingting & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Effects of risk information on pedestrian evacuation during fire emergencies: Virtual experiments and survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).
    13. Zhou, Jianfeng & Reniers, Genserik, 2022. "Petri-net based cooperation modeling and time analysis of emergency response in the context of domino effect prevention in process industries," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Jin, Kun & Wang, Wei & Li, Xinran & Chen, Siyuan & Qin, Shaoyang & Hua, Xuedong, 2023. "Cascading failure in urban rail transit network considering demand variation and time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    16. Lu, Qing-Chang & Zhang, Lei & Xu, Peng-Cheng & Cui, Xin & Li, Jing, 2022. "Modeling network vulnerability of urban rail transit under cascading failures: A Coupled Map Lattices approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Qu, Pengfei & Zhang, Limao, 2025. "Uncertainty-based multi-objective optimization in twin tunnel design considering fluid-solid coupling," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    18. Wang, Jianwei & Zhao, Naixuan & Xiang, Linghui & Wang, Chupei, 2023. "Abnormal cascading dynamics based on the perspective of road impedance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    19. Wang, Ziqi & Pei, Yulong & Zhang, Jianhua & Dong, Chuntong & Liu, Jing & Zhou, Dongyue, 2024. "Vulnerability analysis of public transit systems from the perspective of the traffic situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    20. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.