IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000444.html
   My bibliography  Save this article

Cascading dynamics in double-layer hypergraphs with higher-order inter-layer interdependencies

Author

Listed:
  • Jia, Chun-Xiao
  • Liu, Run-Ran

Abstract

Higher-order interactions are ubiquitous in complex systems where groups of elements interact collectively rather than through simple pairwise connections. This study investigates how higher-order inter-layer interdependencies affect the robustness and cascading dynamics in double-layer hypergraphs, in which groups of nodes in one layer are interdependent with groups of nodes in the other layer. We analyze how the average size of these interdependency groups across layers influences system robustness and the nature of phase transitions. First, as the average size of higher-order inter-layer interdependency groups increases, the system undergoes a change from a second-order to a first-order phase transition. Second, in scale-free hypergraphs, larger interdependency groups can cause two consecutive first-order transitions, indicating nontrivial dynamical behavior that may affect the predictability and controllability of the system. Finally, the impact of higher-order inter-layer interdependencies on system robustness is not straightforward, i.e., it does not monotonically increase or decrease across both scale-free and random hypergraphs. Specifically, intermediate-sized interdependency groups result in the most vulnerable system, as indicated by the highest critical point for system disintegration. These results give useful views into how multilayer network architectures with higher-order interdependencies affect the resilience and stability of interconnected systems, offering practical guidance for designing more robust infrastructure networks.

Suggested Citation

  • Jia, Chun-Xiao & Liu, Run-Ran, 2025. "Cascading dynamics in double-layer hypergraphs with higher-order inter-layer interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000444
    DOI: 10.1016/j.ress.2025.110841
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000444
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Cheng & Zhao, Dandan & Zhong, Ming & Peng, Hao & Wang, Wei, 2025. "Modeling and analysis of cascading failures in multilayer higher-order networks," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    2. Gergely Palla & Imre Derényi & Illés Farkas & Tamás Vicsek, 2005. "Uncovering the overlapping community structure of complex networks in nature and society," Nature, Nature, vol. 435(7043), pages 814-818, June.
    3. Wang, Ying & Zhao, Ou & Zhang, Limao, 2024. "Multiplex networks in resilience modeling of critical infrastructure systems: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Peng, Hao & Zhao, Yifan & Zhao, Dandan & Zhong, Ming & Hu, Zhaolong & Han, Jianming & Li, Runchao & Wang, Wei, 2023. "Robustness of higher-order interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Yin, Dezhi & Huang, Wencheng & Shuai, Bin & Liu, Hongyi & Zhang, Yue, 2022. "Structural characteristics analysis and cascading failure impact analysis of urban rail transit network: From the perspective of multi-layer network," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Zhao, Tianxiang & Tu, Haicheng & Jin, Rui & Xia, Yongxiang & Wang, Fangfang, 2024. "Improving resilience of cyber–physical power systems against cyber attacks through strategic energy storage deployment," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    8. Dong, Gaogao & Luo, Yanting & Liu, Yangyang & Wang, Fan & Qin, Huanmei & Vilela, André L.M., 2022. "Percolation behaviors of a network of networks under intentional attack with limited information," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Wang, Shuliang & Gu, Xifeng & Chen, Jiawei & Chen, Chen & Huang, Xiaodi, 2023. "Robustness improvement strategy of cyber-physical systems with weak interdependency," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    11. Zhang, Hai-Feng & Wang, Hao-Ren & Xiang, Bing-Bing & Wang, Huan, 2024. "Robustness study of hybrid hypergraphs," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    12. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    13. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Higher-order percolation in simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan & Jia, Chun-Xiao, 2025. "Hypergraph-based modeling of cascading failures with probabilistic node-to-group interactions," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    2. Liu, Run-Ran & Chu, Changchang & Meng, Fanyuan, 2023. "Higher-order interdependent percolation on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Liang, Yuan & Qi, Mingze & Huangpeng, Qizi & Duan, Xiaojun, 2023. "Percolation of interlayer feature-correlated multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. Peng Liu, 2024. "Antinetwork among China A-shares," Papers 2404.00028, arXiv.org.
    5. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Zhao, Dandan & Li, Runchao & Peng, Hao & Zhong, Ming & Wang, Wei, 2022. "Percolation on simplicial complexes," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    7. Lv, Changchun & Lei, Yulin & Zhang, Ye & Duan, Dongli & Si, Shubin, 2025. "Resilience of the interdependent network against cascade failure," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    8. Qian, Cheng & Zhao, Dandan & Zhong, Ming & Peng, Hao & Wang, Wei, 2025. "Modeling and analysis of cascading failures in multilayer higher-order networks," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    9. Xu, Yang & Peng, Peng & Lu, Feng & Claramunt, Christophe, 2024. "Uncovering the multiplex network of global container shipping: Insights from shipping companies," Journal of Transport Geography, Elsevier, vol. 120(C).
    10. Chen, Lei & Lu, Juntao & Wang, Yalin & Jia, Chunxiao & Liu, Run-Ran & Meng, Fanyuan, 2025. "Cascading failures with group support in interdependent hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    11. Abbasizadeh, Ali & Azad-Farsani, Ehsan, 2024. "Cyber-constrained load shedding for smart grid resilience enhancement," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    13. Peng, Hao & Zhao, Yifan & Zhao, Dandan & Zhong, Ming & Hu, Zhaolong & Han, Jianming & Li, Runchao & Wang, Wei, 2023. "Robustness of higher-order interdependent networks," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    14. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    15. Luo, Yichen & Xu, Xiao & Liu, Junyong & Liu, Youbo & Xu, Lixiong & Hu, Weihao, 2025. "Invulnerability analysis of urban power system based multi-layer heterogeneous complex network considering high-security level," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    16. Havlin, Shlomo & Stanley, H. Eugene & Bashan, Amir & Gao, Jianxi & Kenett, Dror Y., 2015. "Percolation of interdependent network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 72(C), pages 4-19.
    17. Duan, Yuxian & Huang, Jian & Deng, Hanqiang & Ni, Xiangrong, 2024. "Robustness of hypergraph under attack with limited information based on percolation theory," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    18. Wang, Chengjiang & Wang, Li & Wang, Juan & Sun, Shiwen & Xia, Chengyi, 2017. "Inferring the reputation enhances the cooperation in the public goods game on interdependent lattices," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 18-29.
    19. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    20. repec:plo:pone00:0090265 is not listed on IDEAS
    21. Shogo Mizutaka & Kousuke Yakubo, 2017. "Structural instability of large-scale functional networks," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-11, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.