IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v154y2016icp188-196.html
   My bibliography  Save this article

An optimization method for the distance between exits of buildings considering uncertainties based on arbitrary polynomial chaos expansion

Author

Listed:
  • Xie, Qimiao
  • Wang, Jinhui
  • Lu, Shouxiang
  • Hensen, Jan L.M.

Abstract

The distance between exits is an important design parameter in fire safety design of buildings. In order to find the optimal distance between exits under uncertainties with a low computational cost, the surrogate model (i.e. approximation model) of evacuation time is constructed by the arbitrary polynomial chaos expansion. Through a two-stage nested Monte Carlo simulation of this surrogate model, the optimal distance between exits under uncertainty is found efficiently. In order to demonstrate the proposed method, a single room with two exits is presented as a fire compartment and uncertainties of occupant density and child-occupant load ratio are also considered. In this case, the results showed that the optimal distance between exits changes with the level of probability of evacuation time, and there is a critical level of probability for the transition of the optimal value of the distance between exits. Furthermore, the traditional Monte Carlo simulation method is used to compare the accuracy of the surrogate model with the computer evacuation model FDS+Evac developed by the VTT Technical Research Center of Finland [1]. The results indicate that the proposed surrogate-based optimization method can achieve a similar accuracy with a much lower computational cost.

Suggested Citation

  • Xie, Qimiao & Wang, Jinhui & Lu, Shouxiang & Hensen, Jan L.M., 2016. "An optimization method for the distance between exits of buildings considering uncertainties based on arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 188-196.
  • Handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:188-196
    DOI: 10.1016/j.ress.2016.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    2. Lovreglio, Ruggiero & Ronchi, Enrico & Borri, Dino, 2014. "The validation of evacuation simulation models through the analysis of behavioural uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 166-174.
    3. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Shengwen Yin & Keliang Jin & Yu Bai & Wei Zhou & Zhonggang Wang, 2023. "Solution-Space-Reduction-Based Evidence Theory Method for Stiffness Evaluation of Air Springs with Epistemic Uncertainty," Mathematics, MDPI, vol. 11(5), pages 1-19, March.
    3. Kröker, Ilja & Oladyshkin, Sergey, 2022. "Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.
    5. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    7. Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
    8. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    9. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    10. David Breitenmoser & Francesco Cerutti & Gernot Butterweck & Malgorzata Magdalena Kasprzak & Sabine Mayer, 2023. "Emulator-based Bayesian inference on non-proportional scintillation models by compton-edge probing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    12. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
    15. Al Ali, Hannah & Daneshkhah, Alireza & Boutayeb, Abdesslam & Malunguza, Noble Jahalamajaha & Mukandavire, Zindoga, 2022. "Exploring dynamical properties of a Type 1 diabetes model using sensitivity approaches," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 324-342.
    16. Kayvan Aghabayk & Alireza Soltani & Nirajan Shiwakoti, 2022. "Investigating Pedestrians’ Exit Choice with Incident Location Awareness in an Emergency in a Multi-Level Shopping Complex," Sustainability, MDPI, vol. 14(19), pages 1-21, September.
    17. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    18. Gersbach, Hans & Liu, Yulin & Tischhauser, Martin, 2021. "Versatile forward guidance: escaping or switching?," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    19. de Cursi, Eduardo Souza, 2021. "Uncertainty quantification in game theory," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    20. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:154:y:2016:i:c:p:188-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.