IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v258y2025ics0951832025001218.html
   My bibliography  Save this article

Computational fluid dynamics -informed virtual safety assessment of steel-framed structure with fire-induced ductile failure

Author

Listed:
  • Shi, Zhiyi
  • Feng, Yuan
  • Egbelakin, Temitope
  • Yang, Chengwei
  • Gao, Wei

Abstract

This paper proposes a Computational Fluid Dynamics-Informed (CI) Virtual Safety Assessment (VSA) framework for predicting the time-dependent ductile failure of steel-framed buildings during fire incidents. By incorporating a CI-based physical model, the spatiotemporally nonlinear temperature field in real fire scenarios can be reproduced and used as thermal boundary conditions for sequential thermal-elastoplastic analysis, enabling the assessment of fire-induced structural responses. Additionally, non-deterministic material properties caused by manufacturing imperfections are considered to analyze their impacts on uncertain high-temperature structural ductile deformation. To achieve rapid assessment, a Virtual Modeling (VM) technique is introduced to capture the nonlinear relationship between physical input parameters and corresponding structural responses. The proposed CI-VSA framework is applied to two real steel structures, a steel-framed factory and a transmission tower, to verify its efficiency and accuracy. The results demonstrate that, compared to traditional simulation-based prediction methods, the proposed CI-VSA framework reduces computational resource consumption by 99% and achieves highly accurate predictions for most sample points, with relative errors below 1%, under a training sample size of 1,000. In practice, the CI-VSA framework enables continuous prediction of spatiotemporal structural responses through the analysis of fire-thermal-structural interactions, achieves real-time updates of structural safety statuses, and ultimately provides early-stage safety warnings.

Suggested Citation

  • Shi, Zhiyi & Feng, Yuan & Egbelakin, Temitope & Yang, Chengwei & Gao, Wei, 2025. "Computational fluid dynamics -informed virtual safety assessment of steel-framed structure with fire-induced ductile failure," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001218
    DOI: 10.1016/j.ress.2025.110918
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025001218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Bin & Li, Yan & Zhang, Yangyang & Guo, Tong, 2024. "Multi-source heterogeneous data fusion prediction technique for the utility tunnel fire detection," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Himoto, Keisuke & Suzuki, Keichi, 2021. "Computational framework for assessing the fire resilience of buildings using the multi-layer zone model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. HIMOTO, Keisuke & SAWADA, Yuto & OHMIYA, Yoshifumi, 2024. "Quantifying fire resilience of buildings considering the impact of water damage accompanied by fire extinguishment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Worrell, Clarence & Luangkesorn, Louis & Haight, Joel & Congedo, Thomas, 2019. "Machine learning of fire hazard model simulations for use in probabilistic safety assessments at nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 128-142.
    5. Junfeng, Chen & Maohua, Zhong & Peiyun, Qiu & Zeng, Long & Jiacheng, Chen, 2023. "Mapping the fire risk in buildings: A hybrid method of ASET-RSET concept and FED concept," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    6. Ding, Zhikun & Xu, Shengqu & Xie, Xiaofeng & Zheng, Kairui & Wang, Daochu & Fan, Jianhao & Li, Hong & Liao, Longhui, 2024. "A building information modeling-based fire emergency evacuation simulation system for large infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Amin, Md. Tanjin & Scarponi, Giordano Emrys & Cozzani, Valerio & Khan, Faisal, 2024. "Improved pool fire-initiated domino effect assessment in atmospheric tank farms using structural response," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Jiang, Hongrui & Ding, Long & Ji, Jie & Zhu, Jiping, 2024. "Building reliability of risk assessment of domino effects in chemical tank farm through an improved uncertainty analysis method," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    9. Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Ma, Chenzhi & Gernay, Thomas, 2025. "Fragility curves for structural fire performance of various composite floor designs under natural fire," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    11. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Jihao & Li, Junjie & Tam, Wai Cheong & Gardoni, Paolo & Usmani, Asif Sohail, 2025. "Physics_GNN: Towards Physics-informed graph neural network for the real-time simulation of obstructed gas explosion," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    2. Yu, Aokun & Bu, Haichao & Luan, Tianyi & Gai, Wenmei, 2025. "Integrated multi-agent-based outpatient building fire response modeling for risk-driven resource use and retrofitting strategies: A case study," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    3. Ma, Chenzhi & Gernay, Thomas, 2025. "Fragility curves for structural fire performance of various composite floor designs under natural fire," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    4. Wang, Ning & Xu, Yan & Wang, Sutong, 2022. "Interpretable boosting tree ensemble method for multisource building fire loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Golshani, Feze & Fang, Liping, 2025. "A fire navigation model: Considering travel time, impact of fire, and congestion severity," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
    6. Lu, Peng & Li, Yufei, 2025. "Agent-based fire evacuation model using social learning theory and intelligent optimization algorithms," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    7. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Ma, Weikai & Wang, Yanfu & Xing, Peijie & Yang, Ming, 2025. "A Monte Carlo-based modeling method for the spatial-temporal evolution process of multi-hazard and higher-order domino effect," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    10. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Zhang, Wenke & Zhang, Zhichao & Wang, Tao & Nong, Tingting & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Effects of risk information on pedestrian evacuation during fire emergencies: Virtual experiments and survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 656(C).
    12. Zhao, Yixin & Cai, Baoping & Cozzani, Valerio & Liu, Yiliu, 2025. "Failure dependence and cascading failures: A literature review and research opportunities," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    13. Ma, Qiuju & Chen, Zhennan & Chen, Jianhua & Sun, Yubo & Chen, Nan & Du, Mengzhen, 2025. "Assist in real-time risk evaluation induced by electrical cabinet fires in nuclear power plants: A dual AI framework employing BiTCN and TCNN," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    14. HIMOTO, Keisuke & SAWADA, Yuto & OHMIYA, Yoshifumi, 2024. "Quantifying fire resilience of buildings considering the impact of water damage accompanied by fire extinguishment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Arcaro, Anna & Zhuang, Bozhou & Gencturk, Bora & Ghanem, Roger, 2024. "Damage detection and localization in sealed spent nuclear fuel dry storage canisters using multi-task machine learning classifiers," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    18. Ding, Zhikun & Xu, Shengqu & Xie, Xiaofeng & Zheng, Kairui & Wang, Daochu & Fan, Jianhao & Li, Hong & Liao, Longhui, 2024. "A building information modeling-based fire emergency evacuation simulation system for large infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    19. Huang, Ruike & Zhang, Xuexia & Dong, Sidi & Huang, Lei & Liao, Hongbo & Li, Yuan, 2024. "A refined grey Verhulst model for accurate degradation prognostication of PEM fuel cells based on inverse hyperbolic sine function transformation," Renewable Energy, Elsevier, vol. 237(PC).
    20. Quinci, Gianluca & Paolacci, Fabrizio & Fragiadakis, Michalis & Bursi, Oreste S., 2025. "A machine learning framework for seismic risk assessment of industrial equipment," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:258:y:2025:i:c:s0951832025001218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.