IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000237.html
   My bibliography  Save this article

Fragility curves for structural fire performance of various composite floor designs under natural fire

Author

Listed:
  • Ma, Chenzhi
  • Gernay, Thomas

Abstract

Although structural fire design in the United States is primarily prescriptive, performance-based approaches are increasingly considered for their potential to deliver flexible, resilient, and economic solutions. However, comparisons of performance between designs resulting from the two approaches have rarely been performed, especially under natural fires and considering uncertainty in demand and response. To support a comparative assessment of the value delivered by prescriptive and performance-based designs, this study conducts a probabilistic numerical analysis of steel-concrete composite floors under natural fires including the cooling phase. Fragility curves are developed for various floor designs to quantify for each the probability of damage states as a function of the fire severity. Results show that the performance-based design using tensile membrane action has a higher probability of moderate damage but a lower probability of integrity failure than the prescriptive design. Parametric analyses show that increasing the amount of slab reinforcement or the amount of axial restraint at the boundaries further reduces the probability of failure. This work contributes to developing a database of fire fragility functions for evaluating the probabilistic performance of various fire designs. These findings can support fire loss analyses and comparative assessment of the impact of adopting a performance-based structural fire design.

Suggested Citation

  • Ma, Chenzhi & Gernay, Thomas, 2025. "Fragility curves for structural fire performance of various composite floor designs under natural fire," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000237
    DOI: 10.1016/j.ress.2025.110820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Jin-Zhu & Whitman, Mackenzie & Kermanshah, Amirhassan & Baroud, Hiba, 2021. "A hierarchical Bayesian approach for assessing infrastructure networks serviceability under uncertainty: A case study of water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Tan, Samson & Moinuddin, Khalid, 2019. "Systematic review of human and organizational risks for probabilistic risk analysis in high-rise buildings," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 233-250.
    3. Lu, Qin & Zhang, Wei, 2022. "Integrating dynamic Bayesian network and physics-based modeling for risk analysis of a time-dependent power distribution system during hurricanes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Himoto, Keisuke & Suzuki, Keichi, 2021. "Computational framework for assessing the fire resilience of buildings using the multi-layer zone model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Xie, Qimiao & Zhou, Tianyi & Wang, Changjian & Zhu, Xu & Ma, Chao & Zhang, Aifeng, 2024. "An integrated uncertainty analysis method for the risk assessment of hydrogen refueling stations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    6. Kwag, Shinyoung & Gupta, Abhinav & Dinh, Nam, 2018. "Probabilistic risk assessment based model validation method using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 380-393.
    7. N. Alam & M. Alam & S. Tesfamariam, 2012. "Buildings’ seismic vulnerability assessment methods: a comparative study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 405-424, June.
    8. Ceferino, Luis & Lin, Ning & Xi, Dazhi, 2023. "Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Bansal, Sahil & Cheung, Sai Hung, 2018. "A subset simulation based approach with modified conditional sampling and estimator for loss exceedance curve computation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 94-107.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Zhiyi & Feng, Yuan & Egbelakin, Temitope & Yang, Chengwei & Gao, Wei, 2025. "Computational fluid dynamics -informed virtual safety assessment of steel-framed structure with fire-induced ductile failure," Reliability Engineering and System Safety, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takeda, Satoshi & Kitada, Takanori, 2021. "Simple method based on sensitivity coefficient for stochastic uncertainty analysis in probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Wang, Ning & Xu, Yan & Wang, Sutong, 2022. "Interpretable boosting tree ensemble method for multisource building fire loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Shi, Zhiyi & Feng, Yuan & Egbelakin, Temitope & Yang, Chengwei & Gao, Wei, 2025. "Computational fluid dynamics -informed virtual safety assessment of steel-framed structure with fire-induced ductile failure," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    4. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. HIMOTO, Keisuke & SAWADA, Yuto & OHMIYA, Yoshifumi, 2024. "Quantifying fire resilience of buildings considering the impact of water damage accompanied by fire extinguishment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Raziye Norouzi Masir & Mohammad Ataei & Farhang Sereshki, 2024. "A novel index for shearer system resilience in underground coal mines based on the operational environment," Journal of Risk and Reliability, , vol. 238(3), pages 475-501, June.
    8. Shinyoung Kwag & Jinsung Kwak & Hwanho Lee & Jinho Oh & Gyeong-Hoi Koo, 2019. "Enhancement in the Seismic Performance of a Nuclear Piping System using Multiple Tuned Mass Dampers," Energies, MDPI, vol. 12(11), pages 1-26, May.
    9. Karimi Dehkordi, Mohammadreza & Sattari, Fereshteh & Lefsrud, Lianne, 2025. "Creating an incident investigation framework for a complex socio-technical system: Application of multi-label text classification and Bayesian network structure learning," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    10. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Zeng, Wen & Hu, Jingya & Cui, Boyang & Yang, Zhijang & Hu, Zhen & Han, Cuiyan & Bai, Li, 2025. "Hierarchical structure analysis of water distribution networks coupling pipeline dual graph and infomap algorithm," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    12. Su, Chenxin & Li, Bo & Zhang, Wei & Tian, Wei & Liao, Wenhe, 2025. "An analysis and reliability-based optimization design method of trajectory accuracy for industrial robots considering parametric uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    13. Ding, Zhikun & Xu, Shengqu & Xie, Xiaofeng & Zheng, Kairui & Wang, Daochu & Fan, Jianhao & Li, Hong & Liao, Longhui, 2024. "A building information modeling-based fire emergency evacuation simulation system for large infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Atul Patil & Chaitanya Pathak & Bejoy Alduse, 2023. "Review of Natural Hazard Risks for Wind Farms," Energies, MDPI, vol. 16(3), pages 1-29, January.
    15. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Wang, Yi Victor & Kim, Seung Hee & Kafatos, Menas C., 2023. "Verifying empirical predictive modeling of societal vulnerability to hazardous events: A Monte Carlo experimental approach," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    17. Jin, Song & Gong, Jinxin, 2021. "Fragility analysis and probabilistic performance evaluation of nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    19. Navdeep Agrawal & Laxmi Gupta & Jagabandhu Dixit, 2021. "Assessment of the Socioeconomic Vulnerability to Seismic Hazards in the National Capital Region of India Using Factor Analysis," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    20. Luan, Tianyi & Gai, Wenmei & Sun, Diange & Dong, Hao, 2025. "Emergency evacuation risk assessment for toxic gas attacks in airport terminals: Model, algorithm, and application," Reliability Engineering and System Safety, Elsevier, vol. 253(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.