IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp380-393.html
   My bibliography  Save this article

Probabilistic risk assessment based model validation method using Bayesian network

Author

Listed:
  • Kwag, Shinyoung
  • Gupta, Abhinav
  • Dinh, Nam

Abstract

Past few decades have seen a rapid growth in the availability of computational power and that induces continually reducing cost of simulation. This rapidly changing scenario together with availability of high precision and large-scale experimental data has enabled development of high fidelity simulation tools capable of simulating multi-physics multi-scale phenomena. At the same time, there has been an increased emphasis on developing strategies for verification and validation of such high fidelity simulation tools. The problem is more pronounced in cases where it is not possible to collect experimental data or field measurements on a large-scale or full scale system performance. This is particularly true in case of systems such as nuclear power plants subjected to external hazards such as earthquakes or flooding. In such cases, engineers rely solely on simulation tools but struggle to establish the credibility of the system level simulations. In practice, validation approaches rely heavily on expert elicitation. There is an increasing need of a quantitative approach for validation of high fidelity simulations that is comprehensive, consistent, and effective. A validation approach should be able to consider uncertainties due to incomplete knowledge and randomness in the system's performance as well as in the characterization of external hazard. A new approach to validation is presented in this paper that uses a probabilistic index as a degree of validation and propagates it through the system using the performance-based probabilistic risk assessment (PRA) framework. Unlike traditional PRA approaches, it utilizes the power of Bayesian statistic to account for non-Boolean relationships and correlations among events at various levels of a network representation of the system. Bayesian updating facilitates evaluation of updated validation information as additional data from experimental observations or improved simulations is incorporated. PRA based framework assists in identifying risk-consistent events and critical path for appropriate allocation of resources to improve the validation.

Suggested Citation

  • Kwag, Shinyoung & Gupta, Abhinav & Dinh, Nam, 2018. "Probabilistic risk assessment based model validation method using Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 380-393.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:380-393
    DOI: 10.1016/j.ress.2017.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016305907
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    2. Jiang, Xiaomo & Mahadevan, Sankaran, 2009. "Bayesian structural equation modeling method for hierarchical model validation," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 796-809.
    3. Rebba, Ramesh & Mahadevan, Sankaran, 2008. "Computational methods for model reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1197-1207.
    4. Jiang, Xiaomo & Mahadevan, Sankaran, 2007. "Bayesian risk-based decision method for model validation under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 707-718.
    5. Scott Ferson & William L. Oberkampf, 2009. "Validation of imprecise probability models," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 3(1/2/3), pages 3-22.
    6. Wilson, Alyson G. & Huzurbazar, Aparna V., 2007. "Bayesian networks for multilevel system reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1413-1420.
    7. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Shinyoung Kwag & Jinsung Kwak & Hwanho Lee & Jinho Oh & Gyeong-Hoi Koo, 2019. "Enhancement in the Seismic Performance of a Nuclear Piping System using Multiple Tuned Mass Dampers," Energies, MDPI, vol. 12(11), pages 1-26, May.
    3. Yang, Qing & Zou, Xingqi & Ye, Yunting & Yao, Tao, 2022. "Evaluating the criticality of the product development project portfolio network from the perspective of risk propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    4. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Takeda, Satoshi & Kitada, Takanori, 2021. "Simple method based on sensitivity coefficient for stochastic uncertainty analysis in probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Kwag, Shinyoung & Park, Junhee & Choi, In-Kil, 2020. "Development of efficient complete-sampling-based seismic PSA method for nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    7. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Jin, Song & Gong, Jinxin, 2021. "Fragility analysis and probabilistic performance evaluation of nuclear containment structure subjected to internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    10. Kwag, Shinyoung & Choi, Eujeong & Eem, Seunghyun & Ha, Jeong-Gon & Hahm, Daegi, 2021. "Toward improvement of sampling-based seismic probabilistic safety assessment method for nuclear facilities using composite distribution and adaptive discretization," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Liting Jing & Qingqing Xu & Tao Sun & Xiang Peng & Jiquan Li & Fei Gao & Shaofei Jiang, 2020. "Conceptual Scheme Decision Model for Mechatronic Products Driven by Risk of Function Failure Propagation," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    12. Liming Mu & Yingzhi Zhang & Qiyan Zhang, 2023. "Risk Evaluation Method Based on Fault Propagation and Diffusion," Mathematics, MDPI, vol. 11(19), pages 1-16, September.
    13. Suo, Weilan & Wang, Lin & Li, Jianping, 2021. "Probabilistic risk assessment for interdependent critical infrastructures: A scenario-driven dynamic stochastic model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodda, Saran Srikanth & Gupta, Abhinav & Dinh, Nam, 2020. "Enhancement of risk informed validation framework for external hazard scenario," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    3. Ling, You & Mahadevan, Sankaran, 2013. "Quantitative model validation techniques: New insights," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 217-231.
    4. Sankararaman, Shankar & Mahadevan, Sankaran, 2015. "Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 194-209.
    5. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    6. Li, Chenzhao & Mahadevan, Sankaran, 2016. "Role of calibration, validation, and relevance in multi-level uncertainty integration," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 32-43.
    7. Mullins, Joshua & Ling, You & Mahadevan, Sankaran & Sun, Lin & Strachan, Alejandro, 2016. "Separation of aleatory and epistemic uncertainty in probabilistic model validation," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 49-59.
    8. Jiang, Xiaomo & Mahadevan, Sankaran, 2009. "Bayesian structural equation modeling method for hierarchical model validation," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 796-809.
    9. Jiang, Xiaomo & Yuan, Yong & Liu, Xian, 2013. "Bayesian inference method for stochastic damage accumulation modeling," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 126-138.
    10. Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Model validation under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1232-1241.
    11. Wu, Danqing & Lu, Zhenzhou & Wang, Yanping & Cheng, Lei, 2015. "Model validation and calibration based on component functions of model output," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 59-70.
    12. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    13. Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Urbina, Angel & Mahadevan, Sankaran & Paez, Thomas L., 2011. "Quantification of margins and uncertainties of complex systems in the presence of aleatoric and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1114-1125.
    15. Zhao, Lufeng & Lu, Zhenzhou & Yun, Wanying & Wang, Wenjin, 2017. "Validation metric based on Mahalanobis distance for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 80-89.
    16. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    17. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    18. Li, Wei & Chen, Wei & Jiang, Zhen & Lu, Zhenzhou & Liu, Yu, 2014. "New validation metrics for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 1-11.
    19. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Chai, Naijie & Zhou, Wenliang & Hu, Xinlei, 2022. "Safety evaluation of urban rail transit operation considering uncertainty and risk preference: A case study in China," Transport Policy, Elsevier, vol. 125(C), pages 267-288.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:380-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.