IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v104y2012icp27-35.html
   My bibliography  Save this article

Risk-averse decision-making for civil infrastructure exposed to low-probability, high-consequence events

Author

Listed:
  • Cha, Eun Jeong
  • Ellingwood, Bruce R.

Abstract

Quantitative analysis and assessment of risk to civil infrastructure has two components: probability of a potentially damaging event and consequence of damage, measured in terms of financial or human losses. Decision models that have been utilized during the past three decades take into account the probabilistic component rationally, but address decision-maker attitudes toward consequences and risk only to a limited degree. The application of models reflecting these attitudes to decisions involving low-probability, high-consequence events that may impact civil infrastructure requires a fundamental understanding of risk acceptance attitudes and how they affect individual and group choices. In particular, the phenomenon of risk aversion may be a significant factor in decisions for civil infrastructure exposed to low-probability events with severe consequences, such as earthquakes, hurricanes or floods. This paper utilizes cumulative prospect theory to investigate the role and characteristics of risk-aversion in assurance of structural safety.

Suggested Citation

  • Cha, Eun Jeong & Ellingwood, Bruce R., 2012. "Risk-averse decision-making for civil infrastructure exposed to low-probability, high-consequence events," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 27-35.
  • Handle: RePEc:eee:reensy:v:104:y:2012:i:c:p:27-35
    DOI: 10.1016/j.ress.2012.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012000683
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horwich, George, 2000. "Economic Lessons of the Kobe Earthquake," Economic Development and Cultural Change, University of Chicago Press, vol. 48(3), pages 521-542, April.
    2. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    3. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    4. Menezes, C F & Hanson, D L, 1970. "On the Theory of Risk Aversion," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(3), pages 481-487, October.
    5. Kaufmann, Roger & Gadmer, Andreas & Klett, Ralf, 2001. "Introduction to Dynamic Financial Analysis," ASTIN Bulletin, Cambridge University Press, vol. 31(1), pages 213-249, May.
    6. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    7. Sunstein, Cass R, 2003. "Terrorism and Probability Neglect," Journal of Risk and Uncertainty, Springer, vol. 26(2-3), pages 121-136, March-May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilton, Edgar & Delarue, Erik & D’haeseleer, William & van Sark, Wilfried, 2014. "Reconsidering the capacity credit of wind power: Application of cumulative prospect theory," Renewable Energy, Elsevier, vol. 68(C), pages 752-760.
    2. Cheng, Minghui & Frangopol, Dan M., 2022. "Life-cycle optimization of structural systems based on cumulative prospect theory: Effects of the reference point and risk attitudes," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Zhang, Qiang & Zhao, Yan-Gang & Kolozvari, Kristijan & Xu, Lei, 2022. "Reliability analysis of reinforced concrete structure against progressive collapse," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Wei Pan & Ying Guo & Lei Jin & ShuJie Liao, 2017. "Medical resource inventory model for emergency preparation with uncertain demand and stochastic occurrence time under considering different risk preferences at the airport," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-16, September.
    5. Mark G. Stewart & John Mueller, 2017. "Risk and economic assessment of expedited passenger screening and TSA PreCheck," Journal of Transportation Security, Springer, vol. 10(1), pages 1-22, June.
    6. Grechuk, Bogdan & Zabarankin, Michael, 2014. "Risk averse decision making under catastrophic risk," European Journal of Operational Research, Elsevier, vol. 239(1), pages 166-176.
    7. Wang, Bi & Chin, Kwai Sang & Su, Qin, 2022. "Prevention and adaptation to diversified risks in the seaport–dry port system under asymmetric risk behaviors: Invest earlier or wait?," Transport Policy, Elsevier, vol. 125(C), pages 11-36.
    8. Zou, Guang & Faber, Michael Havbro & González, Arturo & Banisoleiman, Kian, 2021. "Computing the value of information from periodic testing in holistic decision making under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    9. Li, Yaohan & Dong, You & Guo, Hongyuan, 2023. "Copula-based multivariate renewal model for life-cycle analysis of civil infrastructure considering multiple dependent deterioration processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    11. Pedersen, Tom Ivar & Vatn, Jørn, 2022. "Optimizing a condition-based maintenance policy by taking the preferences of a risk-averse decision maker into account," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    12. Morshedi, Mohamad Ali & Kashani, Hamed, 2022. "Assessment of vulnerability reduction policies: Integration of economic and cognitive models of decision-making," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Suo, Weilan & Wang, Lin & Li, Jianping, 2021. "Probabilistic risk assessment for interdependent critical infrastructures: A scenario-driven dynamic stochastic model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Chanel & Graciela Chichilnisky, 2009. "The influence of fear in decisions: Experimental evidence," Journal of Risk and Uncertainty, Springer, vol. 39(3), pages 271-298, December.
    2. Holden, Stein T. & Tilahun, Mesfin, 2019. "How related are risk preferences and time preferences?," CLTS Working Papers 4/19, Norwegian University of Life Sciences, Centre for Land Tenure Studies, revised 16 Oct 2019.
    3. Nathalie Etchart-Vincent, 2009. "Probability weighting and the ‘level’ and ‘spacing’ of outcomes: An experimental study over losses," Journal of Risk and Uncertainty, Springer, vol. 39(1), pages 45-63, August.
    4. Shi, Yun & Cui, Xiangyu & Zhou, Xunyu, 2020. "Beta and Coskewness Pricing: Perspective from Probability Weighting," SocArXiv 5rqhv, Center for Open Science.
    5. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    6. Daniel Woods & Mustafa Abdallah & Saurabh Bagchi & Shreyas Sundaram & Timothy Cason, 2022. "Network defense and behavioral biases: an experimental study," Experimental Economics, Springer;Economic Science Association, vol. 25(1), pages 254-286, February.
    7. Xue Dong He & Sang Hu & Jan Obłój & Xun Yu Zhou, 2017. "Technical Note—Path-Dependent and Randomized Strategies in Barberis’ Casino Gambling Model," Operations Research, INFORMS, vol. 65(1), pages 97-103, February.
    8. Kerim Keskin, 2016. "Inverse S-shaped probability weighting functions in first-price sealed-bid auctions," Review of Economic Design, Springer;Society for Economic Design, vol. 20(1), pages 57-67, March.
    9. Ariane Charpin, 2018. "Tests des modèles de décision en situation de risque. Le cas des parieurs hippiques en France," Revue économique, Presses de Sciences-Po, vol. 69(5), pages 779-803.
    10. Bocqueho, Geraldine & Jacquet, Florence & Reynaud, Arnaud, 2011. "Expected Utility or Prospect Theory Maximizers? Results from a Structural Model based on Field-experiment Data," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114257, European Association of Agricultural Economists.
    11. Thomas Epper & Helga Fehr-Duda & Adrian Bruhin, 2011. "Viewing the future through a warped lens: Why uncertainty generates hyperbolic discounting," Journal of Risk and Uncertainty, Springer, vol. 43(3), pages 169-203, December.
    12. Mohammed Abdellaoui & Horst Zank, 2023. "Source and rank-dependent utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(4), pages 949-981, May.
    13. Andreas C. Drichoutis & Varvara Kechagia, 2016. "The effect of olfactory sensory cues on economic decision making," Working Papers 2016-4, Agricultural University of Athens, Department Of Agricultural Economics.
    14. Tsang, Ming, 2020. "Estimating uncertainty aversion using the source method in stylized tasks with varying degrees of uncertainty," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 84(C).
    15. Pedro Bordalo & Nicola Gennaioli & Andrei Shleifer, 2013. "Salience and Consumer Choice," Journal of Political Economy, University of Chicago Press, vol. 121(5), pages 803-843.
    16. Epper, Thomas & Fehr-Duda, Helga, 2017. "A Tale of Two Tails: On the Coexistence of Overweighting and Underweighting of Rare Extreme Events," Economics Working Paper Series 1705, University of St. Gallen, School of Economics and Political Science.
    17. Mohammed Abdellaoui & Emmanuel Kemel, 2014. "Eliciting Prospect Theory When Consequences Are Measured in Time Units: “Time Is Not Money”," Management Science, INFORMS, vol. 60(7), pages 1844-1859, July.
    18. Gul, Faruk & Pesendorfer, Wolfgang, 2015. "Hurwicz expected utility and subjective sources," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 465-488.
    19. Heutel, Garth, 2019. "Prospect theory and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 236-254.
    20. Galarza, Francisco, 2009. "Choices under Risk in Rural Peru," MPRA Paper 17708, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:104:y:2012:i:c:p:27-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.