IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v54y2010i12p1074-1083.html
   My bibliography  Save this article

Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion

Author

Listed:
  • Valero, Alicia
  • Valero, Antonio

Abstract

This paper shows how thermodynamics and in particular the exergy analysis can help to assess the degradation degree of earth's mineral resources. The resources may be physically assessed as its exergy content as well as the exergy required for replacing them from a complete degraded state to the conditions in which they are currently presented in nature. In this paper, an analysis of the state of our mineral resources has been accomplished. For that purpose an exergy accounting of 51 minerals has been carried out throughout the 20th century. This has allowed estimating from geological data when the peak of production of the main mineral commodities could be reached. The obtained Hubbert's bell-shaped curves of the mineral and fossil fuels commodities can now be represented in an all-together exergy–time representation here named as the “exergy countdown”. This shows in a very schematic way the amount of exergy resources available in the planet and the possible exhaustion behaviour. Our results show that the peak of production of the most important minerals might be reached before the end of the 21st century. This confirms the Hubbert trend curves for minerals obtained by other authors using a different methodology. These figures may change, as new discoveries are made. However, assuming that these discoveries double, most of the peaks would only displace our concern around 30 years. This is due to our exponential demand growth. The exergy analysis of minerals could constitute a universal and transparent tool for the management of the earth's physical stock.

Suggested Citation

  • Valero, Alicia & Valero, Antonio, 2010. "Physical geonomics: Combining the exergy and Hubbert peak analysis for predicting mineral resources depletion," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1074-1083.
  • Handle: RePEc:eee:recore:v:54:y:2010:i:12:p:1074-1083
    DOI: 10.1016/j.resconrec.2010.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344910000510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2010.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valero, Alicia & Valero, Antonio & Martínez, Amaya, 2010. "Inventory of the exergy resources on earth including its mineral capital," Energy, Elsevier, vol. 35(2), pages 989-995.
    2. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    3. Berry, R. Stephen & Salamon, Peter & Heal, Geoffrey, 1978. "On a relation between economic and thermodynamic optima," Resources and Energy, Elsevier, vol. 1(2), pages 125-137, October.
    4. Ruth, Matthias, 1995. "Thermodynamic constraints on optimal depletion of copper and aluminum in the United States: a dynamic model of substitution and technical change," Ecological Economics, Elsevier, vol. 15(3), pages 197-213, December.
    5. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    6. Bardi, Ugo, 2005. "The mineral economy: a model for the shape of oil production curves," Energy Policy, Elsevier, vol. 33(1), pages 53-61, January.
    7. Roberts, F. & Torrens, I., 1974. "Analysis of the life cycle of non-ferrous minerals," Resources Policy, Elsevier, vol. 1(1), pages 14-28, September.
    8. Roma, Antonio, 2006. "Energy, money, and pollution," Ecological Economics, Elsevier, vol. 56(4), pages 534-545, April.
    9. Nguyen, Hong X. & Yamamoto, Ryoichi, 2007. "Modification of ecological footprint evaluation method to include non-renewable resource consumption using thermodynamic approach," Resources, Conservation & Recycling, Elsevier, vol. 51(4), pages 870-884.
    10. Valero, Antonio & Valero, Alicia, 2010. "Exergoecology: A thermodynamic approach for accounting the Earth's mineral capital. The case of bauxite–aluminium and limestone–lime chains," Energy, Elsevier, vol. 35(1), pages 229-238.
    11. Craig Bond Hatfield, 1997. "Oil back on the global agenda," Nature, Nature, vol. 387(6629), pages 121-121, May.
    12. Bentley, R. W., 2002. "Global oil & gas depletion: an overview," Energy Policy, Elsevier, vol. 30(3), pages 189-205, February.
    13. Sciubba, Enrico, 2003. "Cost analysis of energy conversion systems via a novel resource-based quantifier," Energy, Elsevier, vol. 28(5), pages 457-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valero, Alicia & Valero, Antonio & Calvo, Guiomar, 2015. "Using thermodynamics to improve the resource efficiency indicator GDP/DMC," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 110-117.
    2. Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2017. "Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 208-217.
    3. Sen, Doruk & Hamurcuoglu, K. Irem & Ersoy, Melisa Z. & Tunç, K.M. Murat & Günay, M. Erdem, 2023. "Forecasting long-term world annual natural gas production by machine learning," Resources Policy, Elsevier, vol. 80(C).
    4. Jia, Hongxiang & Li, Tianjiao & Wang, Anjian & Liu, Guwang & Guo, Xiaoqian, 2021. "Decoupling analysis of economic growth and mineral resources consumption in China from 1992 to 2017: A comparison between tonnage and exergy perspective," Resources Policy, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    2. Valero, Al. & Valero, A., 2011. "A prediction of the exergy loss of the world's mineral reserves in the 21st century," Energy, Elsevier, vol. 36(4), pages 1848-1854.
    3. Ugo Bardi & Alessandro Lavacchi, 2009. "A Simple Interpretation of Hubbert’s Model of Resource Exploitation," Energies, MDPI, vol. 2(3), pages 1-16, August.
    4. Jakobsson, Kristofer & Söderbergh, Bengt & Höök, Mikael & Aleklett, Kjell, 2009. "How reasonable are oil production scenarios from public agencies?," Energy Policy, Elsevier, vol. 37(11), pages 4809-4818, November.
    5. Persson, Tobias A. & Azar, C. & Johansson, D. & Lindgren, K., 2007. "Major oil exporters may profit rather than lose, in a carbon-constrained world," Energy Policy, Elsevier, vol. 35(12), pages 6346-6353, December.
    6. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    7. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    8. 'Eric Herbert & and Gael Giraud & Aur'elie Louis-Napol'eon & Christophe Goupil, 2022. "Macroeconomic Dynamics in a finite world: the Thermodynamic Potential Approach," Papers 2204.02038, arXiv.org, revised May 2022.
    9. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    10. Antonio Roma & Davide Pirino, 2008. "A Theoretical Model for the Extraction and Refinement of Natural Resources," Department of Economics University of Siena 537, Department of Economics, University of Siena.
    11. Ament, Joe, 2020. "An ecological monetary theory," Ecological Economics, Elsevier, vol. 171(C).
    12. Domínguez, Adriana & Czarnowska, Lucyna & Valero, Alicia & Stanek, Wojciech & Valero, Antonio, 2014. "Thermo-ecological and exergy replacement costs of nickel processing," Energy, Elsevier, vol. 72(C), pages 103-114.
    13. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
    14. Valero, Alicia & Domínguez, Adriana & Valero, Antonio, 2015. "Exergy cost allocation of by-products in the mining and metallurgical industry," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 128-142.
    15. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    16. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    17. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    18. Kovalev, Andrey V., 2016. "Misuse of thermodynamic entropy in economics," Energy, Elsevier, vol. 100(C), pages 129-136.
    19. Costantini, Valeria & Gracceva, Francesco & Markandya, Anil & Vicini, Giorgio, 2007. "Security of energy supply: Comparing scenarios from a European perspective," Energy Policy, Elsevier, vol. 35(1), pages 210-226, January.
    20. Valero, Alicia & Valero, Antonio & Gómez, Javier B., 2011. "The crepuscular planet. A model for the exhausted continental crust," Energy, Elsevier, vol. 36(1), pages 694-707.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:54:y:2010:i:12:p:1074-1083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.