IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v225y2020ics092552731930413x.html
   My bibliography  Save this article

Coordinating quality, time, and carbon emissions in perishable food production: A new technology integrating GERT and the Bayesian approach

Author

Listed:
  • Wang, Haiyan
  • Zhan, Sha-lei
  • Ng, Chi To
  • Cheng, T.C.E.

Abstract

This study concerns improving the performance of perishable food production from the joint perspective of management and technology. We consider a new idea about sustainable quality management for perishable food, which has aroused growing concern recently. Quality improvement activities (QIAs) should be carried out within the framework of the sustainable development. This motivates us to explore the tradeoffs among three sustainable metrics which involve quality, time and carbon emissions in perishable food production when optimizing QIA decision making. Our main contribution is proposing a new technology integrating Graphic Evaluation and Review Technique (GERT) and Bayesian approach, in which GERT can present the uncertainty of the three metrics and forecast their expected trends, and Bayesian approach can evaluate the probabilistic changes of the three metrics resulting from QIA decision making. To the best of our knowledge, this study is the first to use the above decision-making technology in food quality management. Furthermore, a multi-objective optimization model is built and a customized multi-objective particle swarm optimization is employed to generate the three-dimensional Pareto front to aid the decision making. We take bottled milk production as an example and present a case study on a famous Chinese dairy manufacturing firm. Numerical results and managerial insights show the advantages of our technology which include: (1) we can mitigate uncertainty, but do not change the random nature of food production; (2) we can reinforce the stability of the probabilistic change of the three metrics by increasing of the QIA-trial size; (3) we can visualize the optimal tradeoffs among the three metrics from different angles of view; and (4) we can figure out individualized sustainable quality management plans which are node-oriented and objective-oriented. In conclusion, we hope this study can be a beneficial supplement to the quality management field of perishable food with respect to technology innovation.

Suggested Citation

  • Wang, Haiyan & Zhan, Sha-lei & Ng, Chi To & Cheng, T.C.E., 2020. "Coordinating quality, time, and carbon emissions in perishable food production: A new technology integrating GERT and the Bayesian approach," International Journal of Production Economics, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:proeco:v:225:y:2020:i:c:s092552731930413x
    DOI: 10.1016/j.ijpe.2019.107570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552731930413X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.107570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tiwari, Sunil & Cárdenas-Barrón, Leopoldo Eduardo & Goh, Mark & Shaikh, Ali Akbar, 2018. "Joint pricing and inventory model for deteriorating items with expiration dates and partial backlogging under two-level partial trade credits in supply chain," International Journal of Production Economics, Elsevier, vol. 200(C), pages 16-36.
    2. Ting, S.L. & Tse, Y.K. & Ho, G.T.S. & Chung, S.H. & Pang, G., 2014. "Mining logistics data to assure the quality in a sustainable food supply chain: A case in the red wine industry," International Journal of Production Economics, Elsevier, vol. 152(C), pages 200-209.
    3. Govindan, Kannan, 2018. "Sustainable consumption and production in the food supply chain: A conceptual framework," International Journal of Production Economics, Elsevier, vol. 195(C), pages 419-431.
    4. Nelson, Richard Graham & Azaron, Amir & Aref, Samin, 2016. "The use of a GERT based method to model concurrent product development processes," European Journal of Operational Research, Elsevier, vol. 250(2), pages 566-578.
    5. Sgarbossa, Fabio & Russo, Ivan, 2017. "A proactive model in sustainable food supply chain: Insight from a case study," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 596-606.
    6. Shankar, Ravi & Gupta, Rachita & Pathak, Devendra Kumar, 2018. "Modeling critical success factors of traceability for food logistics system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 205-222.
    7. Chen, Chialin & Zhang, Jun & Delaurentis, Teresa, 2014. "Quality control in food supply chain management: An analytical model and case study of the adulterated milk incident in China," International Journal of Production Economics, Elsevier, vol. 152(C), pages 188-199.
    8. Mangla, Sachin Kumar & Luthra, Sunil & Rich, Nick & Kumar, Divesh & Rana, Nripendra P. & Dwivedi, Yogesh K., 2018. "Enablers to implement sustainable initiatives in agri-food supply chains," International Journal of Production Economics, Elsevier, vol. 203(C), pages 379-393.
    9. Chebolu-Subramanian, Vijaya & Gaukler, Gary M., 2015. "Product contamination in a multi-stage food supply chain," European Journal of Operational Research, Elsevier, vol. 244(1), pages 164-175.
    10. Mogale, D.G. & Kumar, Mukesh & Kumar, Sri Krishna & Tiwari, Manoj Kumar, 2018. "Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 40-69.
    11. Sha-lei Zhan & Nan Liu & Yong Ye, 2014. "Coordinating efficiency and equity in disaster relief logistics via information updates," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1607-1621, August.
    12. Singh, Akshit & Shukla, Nagesh & Mishra, Nishikant, 2018. "Social media data analytics to improve supply chain management in food industries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 398-415.
    13. Ala-Harja, Hanne & Helo, Petri, 2014. "Green supply chain decisions – Case-based performance analysis from the food industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 97-107.
    14. Yoo, Seung Ho & Cheong, Taesu, 2018. "Quality improvement incentive strategies in a supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 331-342.
    15. Rong, Aiying & Akkerman, Renzo & Grunow, Martin, 2011. "An optimization approach for managing fresh food quality throughout the supply chain," International Journal of Production Economics, Elsevier, vol. 131(1), pages 421-429, May.
    16. Chernonog, Tatyana & Avinadav, Tal, 2019. "Pricing and advertising in a supply chain of perishable products under asymmetric information," International Journal of Production Economics, Elsevier, vol. 209(C), pages 249-264.
    17. Chen, You-hua & Huang, Sun-jun & Mishra, Ashok K. & Wang, X. Henry, 2018. "Effects of input capacity constraints on food quality and regulation mechanism design for food safety management," Ecological Modelling, Elsevier, vol. 385(C), pages 89-95.
    18. Li, Ruihai & Chan, Ya-Lan & Chang, Chun-Tao & Cárdenas-Barrón, Leopoldo Eduardo, 2017. "Pricing and lot-sizing policies for perishable products with advance-cash-credit payments by a discounted cash-flow analysis," International Journal of Production Economics, Elsevier, vol. 193(C), pages 578-589.
    19. Stefansdottir, Bryndis & Depping, Verena & Grunow, Martin & Kulozik, Ulrich, 2018. "Impact of shelf life on the trade-off between economic and environmental objectives: A dairy case," International Journal of Production Economics, Elsevier, vol. 201(C), pages 136-148.
    20. Jonkman, Jochem & Barbosa-Póvoa, Ana P. & Bloemhof, Jacqueline M., 2019. "Integrating harvesting decisions in the design of agro-food supply chains," European Journal of Operational Research, Elsevier, vol. 276(1), pages 247-258.
    21. Buisman, M.E. & Haijema, R. & Bloemhof-Ruwaard, J.M., 2019. "Discounting and dynamic shelf life to reduce fresh food waste at retailers," International Journal of Production Economics, Elsevier, vol. 209(C), pages 274-284.
    22. Govindan, K. & Jafarian, A. & Khodaverdi, R. & Devika, K., 2014. "Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food," International Journal of Production Economics, Elsevier, vol. 152(C), pages 9-28.
    23. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    24. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    25. Sha-lei Zhan & Nan Liu, 2016. "Determining the optimal decision time of relief allocation in response to disaster via relief demand updates," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(3), pages 509-520, February.
    26. Besik, Deniz & Nagurney, Anna, 2017. "Quality in competitive fresh produce supply chains with application to farmers' markets," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 62-76.
    27. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    28. Soysal, M. & Bloemhof-Ruwaard, J.M. & van der Vorst, J.G.A.J., 2014. "Modelling food logistics networks with emission considerations: The case of an international beef supply chain," International Journal of Production Economics, Elsevier, vol. 152(C), pages 57-70.
    29. Zhou, Li & Xie, Jiaping & Gu, Xiaoyu & Lin, Yong & Ieromonachou, Petros & Zhang, Xiaole, 2016. "Forecasting return of used products for remanufacturing using Graphical Evaluation and Review Technique (GERT)," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 315-324.
    30. Feng, Lin & Chan, Ya-Lan & Cárdenas-Barrón, Leopoldo Eduardo, 2017. "Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date," International Journal of Production Economics, Elsevier, vol. 185(C), pages 11-20.
    31. Banasik, Aleksander & Kanellopoulos, Argyris & Claassen, G.D.H. & Bloemhof-Ruwaard, Jacqueline M. & van der Vorst, Jack G.A.J., 2017. "Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 409-420.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Bastas, 2021. "Sustainable Manufacturing Technologies: A Systematic Review of Latest Trends and Themes," Sustainability, MDPI, vol. 13(8), pages 1-22, April.
    2. Tripathy, Satchidananda & Kumar, Akhilesh & Mahanty, Biswajit, 2023. "Short-lived product returns forecasting when customers are unwilling to return the product: A grey-graphical evaluation and review technique," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    3. Zhang, Zepeng & Wang, Qingzheng & Guan, Qingyu & Xiao, Xiong & Mi, Jimin & Lv, Songjian, 2023. "Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization," Agricultural Water Management, Elsevier, vol. 279(C).
    4. Sushil Gupta & Hossein Rikhtehgar Berenji & Manish Shukla & Nagesh N. Murthy, 2023. "Opportunities in farming research from an operations management perspective," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1577-1596, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Na & Olsen, Tava & Liu, Yanping & Zhang, Abraham, 2022. "Reducing food loss and waste in supply chain operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    2. Volha Yakavenka & Ioannis Mallidis & Dimitrios Vlachos & Eleftherios Iakovou & Zafeiriou Eleni, 2020. "Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products," Annals of Operations Research, Springer, vol. 294(1), pages 593-621, November.
    3. Ge, Houtian & Goetz, Stephan J. & Cleary, Rebecca & Yi, Jing & Gómez, Miguel I., 2022. "Facility locations in the fresh produce supply chain: An integration of optimization and empirical methods," International Journal of Production Economics, Elsevier, vol. 249(C).
    4. Anish Kumar & Sachin Kumar Mangla & Pradeep Kumar & Stavros Karamperidis, 2020. "Challenges in perishable food supply chains for sustainability management: A developing economy perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 1809-1831, July.
    5. Ali Saeed Almuflih & Janpriy Sharma & Mohit Tyagi & Arvind Bhardwaj & Mohamed Rafik Noor Mohamed Qureshi & Nawaf Khan, 2022. "Leveraging the Dynamics of Food Supply Chains towards Avenues of Sustainability," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    6. Lejarza, Fernando & Pistikopoulos, Ioannis & Baldea, Michael, 2021. "A scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study," International Journal of Production Economics, Elsevier, vol. 240(C).
    7. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    8. De, Arijit & Gorton, Matthew & Hubbard, Carmen & Aditjandra, Paulus, 2022. "Optimization model for sustainable food supply chains: An application to Norwegian salmon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    9. Mangla, Sachin Kumar & Luthra, Sunil & Rich, Nick & Kumar, Divesh & Rana, Nripendra P. & Dwivedi, Yogesh K., 2018. "Enablers to implement sustainable initiatives in agri-food supply chains," International Journal of Production Economics, Elsevier, vol. 203(C), pages 379-393.
    10. Kamble, Sachin S. & Gunasekaran, Angappa & Gawankar, Shradha A., 2020. "Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications," International Journal of Production Economics, Elsevier, vol. 219(C), pages 179-194.
    11. Besik, Deniz & Nagurney, Anna & Dutta, Pritha, 2023. "An integrated multitiered supply chain network model of competing agricultural firms and processing firms: The case of fresh produce and quality," European Journal of Operational Research, Elsevier, vol. 307(1), pages 364-381.
    12. Chia-Nan Wang & Nhat-Luong Nhieu & Yu-Chi Chung & Huynh-Tram Pham, 2021. "Multi-Objective Optimization Models for Sustainable Perishable Intermodal Multi-Product Networks with Delivery Time Window," Mathematics, MDPI, vol. 9(4), pages 1-25, February.
    13. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    14. Shi, Yan & Zhang, Zhiyong & Tiwari, Sunil & Yang, Lei, 2023. "Pricing and replenishment strategy for a perishable product under various payment schemes and cap-and-trade regulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    15. Miao Su & Su‐Han Woo & Xiaochun Chen & Keun‐sik Park, 2023. "Identifying critical success factors for the agri‐food cold chain's sustainable development: When the strategy system comes into play," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 444-461, January.
    16. Lejarza, Fernando & Baldea, Michael, 2022. "An efficient optimization framework for tracking multiple quality attributes in supply chains of perishable products," European Journal of Operational Research, Elsevier, vol. 297(3), pages 890-903.
    17. Feng, Lin & Wang, Wan-Chih & Teng, Jinn-Tsair & Cárdenas-Barrón, Leopoldo Eduardo, 2022. "Pricing and lot-sizing decision for fresh goods when demand depends on unit price, displaying stocks and product age under generalized payments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 940-952.
    18. Ningzhou Shen & Yinghua Song & Dan Liu & Dalia Streimikiene, 2021. "Food Quality Competition Among Companies and Government Food Safety Supervision Under Asymmetric Product Substitution," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 23(56), pages 221-221, February.
    19. Hanukov, Gabi & Avinadav, Tal & Chernonog, Tatyana & Yechiali, Uri, 2020. "A service system with perishable products where customers are either fastidious or strategic," International Journal of Production Economics, Elsevier, vol. 228(C).
    20. Pourmohammad-Zia, Nadia & Karimi, Behrooz & Rezaei, Jafar, 2021. "Food supply chain coordination for growing items: A trade-off between market coverage and cost-efficiency," International Journal of Production Economics, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:225:y:2020:i:c:s092552731930413x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.