IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v45y2014i8p1607-1621.html
   My bibliography  Save this article

Coordinating efficiency and equity in disaster relief logistics via information updates

Author

Listed:
  • Sha-lei Zhan
  • Nan Liu
  • Yong Ye

Abstract

This paper addresses a multi-supplier, multi-affected area, multi-relief, and multi-vehicle relief allocation problem in disaster relief logistics. A multi-objective optimisation model based on disaster scenario information updates is proposed in an attempt to coordinate efficiency and equity through timely and appropriate decisions regarding issues such as vehicle routing and relief allocation. An optimal stopping rule is also proposed to determine the optimum period of delay before responding to disaster, because decision making requires accurate disaster information. The main contribution of this paper is solving relief allocation problem in a novel way by correlating operational research with statistical decision making and Bayesian sequential analysis. Finally, a case is presented based on the post-disaster rescue in Eastern China after supertyphoon Saomai to test the applicability and show the potential advantages of the proposed model.

Suggested Citation

  • Sha-lei Zhan & Nan Liu & Yong Ye, 2014. "Coordinating efficiency and equity in disaster relief logistics via information updates," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(8), pages 1607-1621, August.
  • Handle: RePEc:taf:tsysxx:v:45:y:2014:i:8:p:1607-1621
    DOI: 10.1080/00207721.2013.777490
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.777490
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.777490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheu, Jiuh-Biing, 2010. "Dynamic relief-demand management for emergency logistics operations under large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 1-17, January.
    2. Huang, Michael & Smilowitz, Karen & Balcik, Burcu, 2012. "Models for relief routing: Equity, efficiency and efficacy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 2-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yuxuan & Liu, Nan, 2015. "Methodology of emergency medical logistics for public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 178-200.
    2. Yoon Ha Lee & Ji Soo Lee & Seung Chan Baek & Won Hwa Hong, 2020. "Spatial Equity with Census Population Data vs. Floating Population Data: The Distribution of Earthquake Evacuation Shelters in Daegu, South Korea," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    3. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2020. "Planning the delivery of relief supplies upon the occurrence of a natural disaster while considering the assembly process of the relief kits," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    4. Guoyou Yue, 2021. "A Review of the Research on Emergency Logistics for Tropical Cyclone Disasters in Guangxi," GATR Journals gjbssr591, Global Academy of Training and Research (GATR) Enterprise.
    5. V. G. Venkatesh & Abraham Zhang & Eric Deakins & Sunil Luthra & S. Mangla, 2019. "A fuzzy AHP-TOPSIS approach to supply partner selection in continuous aid humanitarian supply chains," Annals of Operations Research, Springer, vol. 283(1), pages 1517-1550, December.
    6. Wang, Haiyan & Zhan, Sha-lei & Ng, Chi To & Cheng, T.C.E., 2020. "Coordinating quality, time, and carbon emissions in perishable food production: A new technology integrating GERT and the Bayesian approach," International Journal of Production Economics, Elsevier, vol. 225(C).
    7. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    8. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2016. "A dynamic model for disaster response considering prioritized demand points," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 59-75.
    9. Shuanglin Li & Kok Lay Teo, 2019. "Post-disaster multi-period road network repair: work scheduling and relief logistics optimization," Annals of Operations Research, Springer, vol. 283(1), pages 1345-1385, December.
    10. Yanyan Wang & Vicki M. Bier & Baiqing Sun, 2019. "Measuring and Achieving Equity in Multiperiod Emergency Material Allocation," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2408-2426, November.
    11. Fatemeh Faghih-Mohammadi & Mohammad Mahdi Nasiri & Dinçer Konur, 2023. "Cross-dock facility for disaster relief operations," Annals of Operations Research, Springer, vol. 322(1), pages 497-538, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    2. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency Relief Routing Models for Injured Victims Considering Equity and Priority," Post-Print hal-02879681, HAL.
    3. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Khanchehzarrin, Saeed & Ghaebi Panah, Mona & Mahdavi-Amiri, Nezam & Shiripour, Saber, 2022. "A bi-level multi-objective location-routing optimization model for disaster relief operations considering public donations," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    5. Li, Xiaoping & Batta, Rajan & Kwon, Changhyun, 2017. "Effective and equitable supply of gasoline to impacted areas in the aftermath of a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 25-34.
    6. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    7. Junhu Ruan & Xuping Wang & Yan Shi, 2014. "A Two-Stage Approach for Medical Supplies Intermodal Transportation in Large-Scale Disaster Responses," IJERPH, MDPI, vol. 11(11), pages 1-29, October.
    8. Christophe Duhamel & Andréa Cynthia Santos & Daniel Brasil & Eric Châtelet & Babiga Birregah, 2016. "Connecting a population dynamic model with a multi-period location-allocation problem for post-disaster relief operations," Annals of Operations Research, Springer, vol. 247(2), pages 693-713, December.
    9. Rezaei-Malek, Mohammad & Torabi, S. Ali & Tavakkoli-Moghaddam, Reza, 2019. "Prioritizing disaster-prone areas for large-scale earthquakes' preparedness: Methodology and application," Socio-Economic Planning Sciences, Elsevier, vol. 67(C), pages 9-25.
    10. Rezaei-Malek, Mohammad & Tavakkoli-Moghaddam, Reza & Cheikhrouhou, Naoufel & Taheri-Moghaddam, Alireza, 2016. "An approximation approach to a trade-off among efficiency, efficacy, and balance for relief pre-positioning in disaster management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 485-509.
    11. Huang, Kai & Jiang, Yiping & Yuan, Yufei & Zhao, Lindu, 2015. "Modeling multiple humanitarian objectives in emergency response to large-scale disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 1-17.
    12. Allahviranloo, Mahdieh & Chow, Joseph Y.J. & Recker, Will W., 2014. "Selective vehicle routing problems under uncertainty without recourse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 68-88.
    13. Kundu, Tanmoy & Sheu, Jiuh-Biing & Kuo, Hsin-Tsz, 2022. "Emergency logistics management—Review and propositions for future research," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    14. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    15. Nagurney, Anna & Flores, Emilio Alvarez & Soylu, Ceren, 2016. "A Generalized Nash Equilibrium network model for post-disaster humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 1-18.
    16. Xuehong Gao, 2022. "A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response," Annals of Operations Research, Springer, vol. 319(1), pages 115-148, December.
    17. Rivera-Royero, Daniel & Galindo, Gina & Yie-Pinedo, Ruben, 2016. "A dynamic model for disaster response considering prioritized demand points," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 59-75.
    18. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    19. Merve Cengiz Toklu, 2023. "A fuzzy multi-criteria approach based on Clarke and Wright savings algorithm for vehicle routing problem in humanitarian aid distribution," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2241-2261, June.
    20. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:45:y:2014:i:8:p:1607-1621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.