IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v177y2016icp44-52.html
   My bibliography  Save this article

Peak power demand reduction for combined manufacturing and HVAC system considering heat transfer characteristics

Author

Listed:
  • Dababneh, Fadwa
  • Li, Lin
  • Sun, Zeyi

Abstract

The industrial sector is one of the main drivers in the continuously rising electricity demand in the United States. Electricity Demand Response is an effective demand side management tool for reducing power demand especially during peak periods. However, according to the Energy Information Administration (EIA), the actual peak load reduction by the industrial sector is much lower than its potential target. Within a typical industrial manufacturing plant, the two main energy consumers are the manufacturing system and the heating ventilation and air conditioning (HVAC) system. In this paper, we introduce a method to reduce the power demand during peak periods using an HVAC working load model that considers manufacturing heat sources. The effect of the manufacturing operation on the indoor temperature and the HVAC working load is quantified by considering the heat transfer characteristics of the machines in the manufacturing system. A mathematical model is formulated using mixed integer nonlinear programming (MINLP) and solved using General Algebraic Modeling (GAMS). An optimal schedule for the manufacturing operation and control scheme for the HVAC temperature setpoints that can minimize the power demand during peak periods under the constraint of production target is identified. A numerical case study is used to illustrate the effectiveness of the proposed method.

Suggested Citation

  • Dababneh, Fadwa & Li, Lin & Sun, Zeyi, 2016. "Peak power demand reduction for combined manufacturing and HVAC system considering heat transfer characteristics," International Journal of Production Economics, Elsevier, vol. 177(C), pages 44-52.
  • Handle: RePEc:eee:proeco:v:177:y:2016:i:c:p:44-52
    DOI: 10.1016/j.ijpe.2016.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316300329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2016.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    2. Xiuli Chao & Frank Y. Chen, 2005. "An Optimal Production and Shutdown Strategy when a Supplier Offers an Incentive Program," Manufacturing & Service Operations Management, INFORMS, vol. 7(2), pages 130-143, March.
    3. Lindblom, Ted & Andersson, Berndt, 1998. "Strategic moves at the prospect of a deregulated electricity market," International Journal of Production Economics, Elsevier, vol. 56(1), pages 423-432, September.
    4. Yang, Liu & Dong, Ciwei & Wan, C.L. Johnny & Ng, Chi To, 2013. "Electricity time-of-use tariff with consumer behavior consideration," International Journal of Production Economics, Elsevier, vol. 146(2), pages 402-410.
    5. McGovern, T. & Hicks, C., 2004. "Deregulation and restructuring of the global electricity supply industry and its impact upon power plant suppliers," International Journal of Production Economics, Elsevier, vol. 89(3), pages 321-337, June.
    6. Wang, Yong & Li, Lin, 2014. "Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis," International Journal of Production Economics, Elsevier, vol. 156(C), pages 246-259.
    7. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    8. Lujano-Rojas, Juan M. & Monteiro, Cláudio & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimum residential load management strategy for real time pricing (RTP) demand response programs," Energy Policy, Elsevier, vol. 45(C), pages 671-679.
    9. Greening, Lorna A., 2010. "Demand response resources: Who is responsible for implementation in a deregulated market?," Energy, Elsevier, vol. 35(4), pages 1518-1525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolin Chu & Yuntian Ge & Xue Zhou & Lin Li & Dong Yang, 2020. "Modeling and Analysis of Electric Vehicle-Power Grid-Manufacturing Facility (EPM) Energy Sharing System under Time-of-Use Electricity Tariff," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    2. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    3. Alexander Brem & Ken Bruton & Paul D. O’Sullivan, 2021. "Assessing the Risk to Indoor Thermal Environments on Industrial Sites Offering AHU Capacity for Demand Response," Energies, MDPI, vol. 14(19), pages 1-28, October.
    4. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.
    5. Mawson, Victoria Jayne & Hughes, Ben Richard, 2020. "Thermal modelling of manufacturing processes and HVAC systems," Energy, Elsevier, vol. 204(C).
    6. Huang, He & Wang, Honglei & Hu, Yu-Jie & Li, Chengjiang & Wang, Xiaolin, 2022. "Optimal plan for energy conservation and CO2 emissions reduction of public buildings considering users' behavior: Case of China," Energy, Elsevier, vol. 261(PA).
    7. Alexander Brem & Dominic T. J. O’Sullivan & Ken Bruton, 2021. "Advancing the Industrial Sectors Participation in Demand Response within National Electricity Grids," Energies, MDPI, vol. 14(24), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    2. Park, S.C. & Jin, Y.G. & Song, H.Y. & Yoon, Y.T., 2015. "Designing a critical peak pricing scheme for the profit maximization objective considering price responsiveness of customers," Energy, Elsevier, vol. 83(C), pages 521-531.
    3. Cui, Weiwei & Li, Lin, 2018. "A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors," International Journal of Production Economics, Elsevier, vol. 201(C), pages 75-88.
    4. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    5. Zhang, Yunchao & Islam, Md Monirul & Sun, Zeyi & Yang, Sijia & Dagli, Cihan & Xiong, Haoyi, 2018. "Optimal sizing and planning of onsite generation system for manufacturing in Critical Peaking Pricing demand response program," International Journal of Production Economics, Elsevier, vol. 206(C), pages 261-267.
    6. Andrew Blohm & Jaden Crawford & Steven A. Gabriel, 2021. "Demand Response as a Real-Time, Physical Hedge for Retail Electricity Providers: The Electric Reliability Council of Texas Market Case Study," Energies, MDPI, vol. 14(4), pages 1-16, February.
    7. Konstantin Biel & Christoph H. Glock, 2017. "Prerequisites of efficient decentralized waste heat recovery and energy storage in production planning," Journal of Business Economics, Springer, vol. 87(1), pages 41-72, January.
    8. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    9. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    10. Talari, Saber & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "Stochastic modelling of renewable energy sources from operators' point-of-view: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1953-1965.
    11. Hong, Seung Ho & Kim, Se Hwan & Kim, Gi Myung & Kim, Hyung Lae, 2014. "Experimental evaluation of BZ-GW (BACnet-ZigBee smart grid gateway) for demand response in buildings," Energy, Elsevier, vol. 65(C), pages 62-70.
    12. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    13. Sousa, Joana & Soares, Isabel, 2023. "Benefits and barriers concerning demand response stakeholder value chain: A systematic literature review," Energy, Elsevier, vol. 280(C).
    14. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    15. Cortés-Arcos, Tomás & Bernal-Agustín, José L. & Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Contreras, Javier, 2017. "Multi-objective demand response to real-time prices (RTP) using a task scheduling methodology," Energy, Elsevier, vol. 138(C), pages 19-31.
    16. Mohamed Habib Jabeur & Sonia Mahjoub & Cyril Toublanc, 2023. "Sustainable Production Scheduling with On-Site Intermittent Renewable Energy and Demand-Side Management: A Feed-Animal Case Study," Energies, MDPI, vol. 16(14), pages 1-24, July.
    17. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    18. Hong, Seung Ho & Yu, Mengmeng & Huang, Xuefei, 2015. "A real-time demand response algorithm for heterogeneous devices in buildings and homes," Energy, Elsevier, vol. 80(C), pages 123-132.
    19. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    20. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:177:y:2016:i:c:p:44-52. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.