IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5433-d1196172.html
   My bibliography  Save this article

Sustainable Production Scheduling with On-Site Intermittent Renewable Energy and Demand-Side Management: A Feed-Animal Case Study

Author

Listed:
  • Mohamed Habib Jabeur

    (Oniris, INRAE, STATSC, 44300 Nantes, France)

  • Sonia Mahjoub

    (Oniris, Nantes University, LEMNA, CS 82225, 44322 Nantes, France)

  • Cyril Toublanc

    (Oniris, Nantes University, CNRS, GEPEA, UMR 6144, F-44000 Nantes, France)

Abstract

By shifting towards renewable energy sources, manufacturing facilities can significantly reduce their carbon footprint. This environmental issue can be addressed by developing sustainable production through on-site renewable electricity generation and demand-side management policies. In this study, the energy required to power the manufacturing system is obtained from different energy sources: the conventional grid, on-site renewable energy, and an energy storage system. The main objective is to generate a production schedule for a flexible multi-process and multi-product manufacturing system that optimizes the utilization and procurement of electricity without affecting the final demand. A mathematical programming model is proposed to minimize both the total production costs and energy costs, considering a time-of-use pricing policy and an incentive-based program. The uncertainty in renewable energy generation, specifically under the worst-case scenario, is taken into account and the model is transformed into a robust two-stage optimization model. To solve this model, a decomposition approach based on a genetic algorithm is applied. The effectiveness of the proposed model and algorithm is tested on a real industry case involving feed-animal products. A sensitivity analysis is conducted by modifying problem parameters. Finally, a comparison with the nested Column and Constraint Generation algorithm is performed. The obtained results from these analyses validated the proposed model and algorithm.

Suggested Citation

  • Mohamed Habib Jabeur & Sonia Mahjoub & Cyril Toublanc, 2023. "Sustainable Production Scheduling with On-Site Intermittent Renewable Energy and Demand-Side Management: A Feed-Animal Case Study," Energies, MDPI, vol. 16(14), pages 1-24, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5433-:d:1196172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mehdi Golari & Neng Fan & Tongdan Jin, 2017. "Multistage Stochastic Optimization for Production-Inventory Planning with Intermittent Renewable Energy," Production and Operations Management, Production and Operations Management Society, vol. 26(3), pages 409-425, March.
    2. Ruiz Duarte, José Luis & Fan, Neng & Jin, Tongdan, 2020. "Multi-process production scheduling with variable renewable integration and demand response," European Journal of Operational Research, Elsevier, vol. 281(1), pages 186-200.
    3. Ashok, S., 2006. "Peak-load management in steel plants," Applied Energy, Elsevier, vol. 83(5), pages 413-424, May.
    4. Ma, Shuaiyin & Zhang, Yingfeng & Lv, Jingxiang & Ge, Yuntian & Yang, Haidong & Li, Lin, 2020. "Big data driven predictive production planning for energy-intensive manufacturing industries," Energy, Elsevier, vol. 211(C).
    5. Zhai, Y. & Biel, K. & Zhao, F. & Sutherland, J. W., 2017. "Dynamic scheduling of a flow shop with on-site wind generation for energy cost reduction under real time electricity pricing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 87366, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Fernandez, Mayela & Li, Lin & Sun, Zeyi, 2013. "“Just-for-Peak” buffer inventory for peak electricity demand reduction of manufacturing systems," International Journal of Production Economics, Elsevier, vol. 146(1), pages 178-184.
    7. Wang, Yong & Li, Lin, 2014. "Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis," International Journal of Production Economics, Elsevier, vol. 156(C), pages 246-259.
    8. Wang, Yong & Li, Lin, 2013. "Time-of-use based electricity demand response for sustainable manufacturing systems," Energy, Elsevier, vol. 63(C), pages 233-244.
    9. Victor Santana-Viera & Jesus Jimenez & Tongdan Jin & Jose Espiritu, 2015. "Implementing factory demand response via onsite renewable energy: a design-of-experiment approach," International Journal of Production Research, Taylor & Francis Journals, vol. 53(23), pages 7034-7048, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    2. Yang, Jiaojiao & Sun, Zeyi & Hu, Wenqing & Steinmeister, Louis, 2022. "Joint control of manufacturing and onsite microgrid system via novel neural-network integrated reinforcement learning algorithms," Applied Energy, Elsevier, vol. 315(C).
    3. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    4. Wang, Yong & Li, Lin, 2016. "Critical peak electricity pricing for sustainable manufacturing: Modeling and case studies," Applied Energy, Elsevier, vol. 175(C), pages 40-53.
    5. Gahm, Christian & Denz, Florian & Dirr, Martin & Tuma, Axel, 2016. "Energy-efficient scheduling in manufacturing companies: A review and research framework," European Journal of Operational Research, Elsevier, vol. 248(3), pages 744-757.
    6. Konstantin Biel & Christoph H. Glock, 2017. "Prerequisites of efficient decentralized waste heat recovery and energy storage in production planning," Journal of Business Economics, Springer, vol. 87(1), pages 41-72, January.
    7. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    8. Ma, Shuaiyin & Ding, Wei & Liu, Yang & Ren, Shan & Yang, Haidong, 2022. "Digital twin and big data-driven sustainable smart manufacturing based on information management systems for energy-intensive industries," Applied Energy, Elsevier, vol. 326(C).
    9. Bruno Mota & Luis Gomes & Pedro Faria & Carlos Ramos & Zita Vale & Regina Correia, 2021. "Production Line Optimization to Minimize Energy Cost and Participate in Demand Response Events," Energies, MDPI, vol. 14(2), pages 1-14, January.
    10. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.
    11. Dababneh, Fadwa & Li, Lin & Sun, Zeyi, 2016. "Peak power demand reduction for combined manufacturing and HVAC system considering heat transfer characteristics," International Journal of Production Economics, Elsevier, vol. 177(C), pages 44-52.
    12. Ivan Ferretti & Matteo Camparada & Lucio Enrico Zavanella, 2022. "Queuing Theory-Based Design Methods for the Definition of Power Requirements in Manufacturing Systems," Energies, MDPI, vol. 15(20), pages 1-14, October.
    13. Cui, Weiwei & Li, Lin, 2018. "A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors," International Journal of Production Economics, Elsevier, vol. 201(C), pages 75-88.
    14. Wang, Yong & Li, Lin, 2014. "Time-of-use based electricity cost of manufacturing systems: Modeling and monotonicity analysis," International Journal of Production Economics, Elsevier, vol. 156(C), pages 246-259.
    15. Zhang, Hao & Cai, Jie & Fang, Kan & Zhao, Fu & Sutherland, John W., 2017. "Operational optimization of a grid-connected factory with onsite photovoltaic and battery storage systems," Applied Energy, Elsevier, vol. 205(C), pages 1538-1547.
    16. Ramin, D. & Spinelli, S. & Brusaferri, A., 2018. "Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process," Applied Energy, Elsevier, vol. 225(C), pages 622-636.
    17. Masmoudi, Oussama & Delorme, Xavier & Gianessi, Paolo, 2019. "Job-shop scheduling problem with energy consideration," International Journal of Production Economics, Elsevier, vol. 216(C), pages 12-22.
    18. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    19. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    20. Pham, An & Jin, Tongdan & Novoa, Clara & Qin, Jin, 2019. "A multi-site production and microgrid planning model for net-zero energy operations," International Journal of Production Economics, Elsevier, vol. 218(C), pages 260-274.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5433-:d:1196172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.