IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v155y2014icp380-390.html
   My bibliography  Save this article

The capacitated Lot Sizing model: A powerful tool for logistics decision making

Author

Listed:
  • Bruno, Giuseppe
  • Genovese, Andrea
  • Piccolo, Carmela

Abstract

Starting from the seminal intuitions that led to the developments of the Economic Order Quantity model and of the formulation of the Dynamic Lot Sizing Problem, inventory models have been widely employed in the academic literature and in corporate practice to solve a wide range of theoretical and real-world problems, as, through simple modifications to the original models, it is possible to accommodate and describe a broad set of situations taking place in complex supply chains and logistics systems.

Suggested Citation

  • Bruno, Giuseppe & Genovese, Andrea & Piccolo, Carmela, 2014. "The capacitated Lot Sizing model: A powerful tool for logistics decision making," International Journal of Production Economics, Elsevier, vol. 155(C), pages 380-390.
  • Handle: RePEc:eee:proeco:v:155:y:2014:i:c:p:380-390
    DOI: 10.1016/j.ijpe.2014.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527314000887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2014.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher Suerie & Hartmut Stadtler, 2003. "The Capacitated Lot-Sizing Problem with Linked Lot Sizes," Management Science, INFORMS, vol. 49(8), pages 1039-1054, August.
    2. Chen, Feng & Lee, Chung-Yee, 2009. "Minimizing the makespan in a two-machine cross-docking flow shop problem," European Journal of Operational Research, Elsevier, vol. 193(1), pages 59-72, February.
    3. William W. Trigeiro & L. Joseph Thomas & John O. McClain, 1989. "Capacitated Lot Sizing with Setup Times," Management Science, INFORMS, vol. 35(3), pages 353-366, March.
    4. Miao, Zhaowei & Lim, Andrew & Ma, Hong, 2009. "Truck dock assignment problem with operational time constraint within crossdocks," European Journal of Operational Research, Elsevier, vol. 192(1), pages 105-115, January.
    5. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    6. Ferreira, Deisemara & Clark, Alistair R. & Almada-Lobo, Bernardo & Morabito, Reinaldo, 2012. "Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production," International Journal of Production Economics, Elsevier, vol. 136(2), pages 255-265.
    7. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    8. Liao, Jui-Jung & Huang, Kuo-Nan & Chung, Kun-Jen, 2012. "Lot-sizing decisions for deteriorating items with two warehouses under an order-size-dependent trade credit," International Journal of Production Economics, Elsevier, vol. 137(1), pages 102-115.
    9. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    10. Kovcs, Andrs & Brown, Kenneth N. & Tarim, S. Armagan, 2009. "An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups," International Journal of Production Economics, Elsevier, vol. 118(1), pages 282-291, March.
    11. Willard I. Zangwill, 1969. "A Backlogging Model and a Multi-Echelon Model of a Dynamic Economic Lot Size Production System--A Network Approach," Management Science, INFORMS, vol. 15(9), pages 506-527, May.
    12. Wen-Lian Hsu, 1983. "On the General Feasibility Test of Scheduling Lot Sizes for Several Products on One Machine," Management Science, INFORMS, vol. 29(1), pages 93-105, January.
    13. HSU, Wen-Lian, 1983. "On the general feasibility test of scheduling lot sizes for several products on one machine," LIDAM Reprints CORE 515, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    14. van Dijk, Nico M. & van der Sluis, Erik, 2006. "Check-in computation and optimization by simulation and IP in combination," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1152-1168, June.
    15. Willard I. Zangwill, 1966. "A Deterministic Multi-Period Production Scheduling Model with Backlogging," Management Science, INFORMS, vol. 13(1), pages 105-119, September.
    16. Kuik, Roelof & Salomon, Marc & van Wassenhove, Luk N., 1994. "Batching decisions: structure and models," European Journal of Operational Research, Elsevier, vol. 75(2), pages 243-263, June.
    17. Yu, Wooyeon & Egbelu, Pius J., 2008. "Scheduling of inbound and outbound trucks in cross docking systems with temporary storage," European Journal of Operational Research, Elsevier, vol. 184(1), pages 377-396, January.
    18. Haase, Knut & Kimms, Alf, 2000. "Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities," International Journal of Production Economics, Elsevier, vol. 66(2), pages 159-169, June.
    19. Suerie, Christopher & Stadtler, Hartmut, 2003. "The Capacitated lot-sizing problem with linked lot sizes," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 20206, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    20. Pochet, Y. & Wolsey, L. A., 1995. "Algorithms and reformulations for lot sizing problems," LIDAM Reprints CORE 1160, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    22. Rezaei, Jafar & Davoodi, Mansoor, 2011. "Multi-objective models for lot-sizing with supplier selection," International Journal of Production Economics, Elsevier, vol. 130(1), pages 77-86, March.
    23. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    24. Imre Barany & Tony J. Van Roy & Laurence A. Wolsey, 1984. "Strong Formulations for Multi-Item Capacitated Lot Sizing," Management Science, INFORMS, vol. 30(10), pages 1255-1261, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossi, Tommaso & Pozzi, Rossella & Testa, Mariapaola, 2017. "EOQ-based inventory management in single-machine multi-item systems," Omega, Elsevier, vol. 71(C), pages 106-113.
    2. Yajaira Cardona-Valdés & Samuel Nucamendi-Guillén & Rodrigo E. Peimbert-García & Gustavo Macedo-Barragán & Eduardo Díaz-Medina, 2020. "A New Formulation for the Capacitated Lot Sizing Problem with Batch Ordering Allowing Shortages," Mathematics, MDPI, vol. 8(6), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jans, Raf & Degraeve, Zeger, 2007. "Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1855-1875, March.
    2. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    3. Yajaira Cardona-Valdés & Samuel Nucamendi-Guillén & Rodrigo E. Peimbert-García & Gustavo Macedo-Barragán & Eduardo Díaz-Medina, 2020. "A New Formulation for the Capacitated Lot Sizing Problem with Batch Ordering Allowing Shortages," Mathematics, MDPI, vol. 8(6), pages 1-16, June.
    4. Jans, R.F. & Degraeve, Z., 2005. "Modeling Industrial Lot Sizing Problems: A Review," ERIM Report Series Research in Management ERS-2005-049-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    6. Liang, Zhe & He, Yan & Wu, Tao & Zhang, Canrong, 2015. "An informative column generation and decomposition method for a production planning and facility location problem," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 88-96.
    7. Sahling, Florian & Buschkühl, Lisbeth & Tempelmeier, Horst & Helber, Stefan, 2008. "Solving a Multi-Level Capacitated Lot Sizing Problem with Multi-Period Setup Carry-Over via a Fix-and-Optimize Heuristic," Hannover Economic Papers (HEP) dp-400, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Awi Federgruen & Joern Meissner & Michal Tzur, 2007. "Progressive Interval Heuristics for Multi-Item Capacitated Lot-Sizing Problems," Operations Research, INFORMS, vol. 55(3), pages 490-502, June.
    9. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    10. Nadjib Brahimi & Stéphane Dauzère-Pérès & Najib M. Najid, 2006. "Capacitated Multi-Item Lot-Sizing Problems with Time Windows," Operations Research, INFORMS, vol. 54(5), pages 951-967, October.
    11. Laurence A. Wolsey, 2002. "Solving Multi-Item Lot-Sizing Problems with an MIP Solver Using Classification and Reformulation," Management Science, INFORMS, vol. 48(12), pages 1587-1602, December.
    12. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    13. Ferreira, Deisemara & Clark, Alistair R. & Almada-Lobo, Bernardo & Morabito, Reinaldo, 2012. "Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production," International Journal of Production Economics, Elsevier, vol. 136(2), pages 255-265.
    14. Toledo, Franklina Maria Bragion & Armentano, Vinicius Amaral, 2006. "A Lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1070-1083, December.
    15. Daniel Quadt & Heinrich Kuhn, 2009. "Capacitated lot‐sizing and scheduling with parallel machines, back‐orders, and setup carry‐over," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(4), pages 366-384, June.
    16. Abdolreza Roshani & Massimo Paolucci & Davide Giglio & Melissa Demartini & Flavio Tonelli & Maxim A. Dulebenets, 2023. "The capacitated lot-sizing and energy efficient single machine scheduling problem with sequence dependent setup times and costs in a closed-loop supply chain network," Annals of Operations Research, Springer, vol. 321(1), pages 469-505, February.
    17. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    18. Absi, Nabil & Kedad-Sidhoum, Safia, 2008. "The multi-item capacitated lot-sizing problem with setup times and shortage costs," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1351-1374, March.
    19. Weidenhiller, Andreas & Jodlbauer, Herbert, 2009. "Equivalence classes of problem instances for a continuous-time lot sizing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 139-149, November.
    20. Kerem Akartunalı & Andrew Miller, 2012. "A computational analysis of lower bounds for big bucket production planning problems," Computational Optimization and Applications, Springer, vol. 53(3), pages 729-753, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:155:y:2014:i:c:p:380-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.