IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v136y2012i2p255-265.html
   My bibliography  Save this article

Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production

Author

Listed:
  • Ferreira, Deisemara
  • Clark, Alistair R.
  • Almada-Lobo, Bernardo
  • Morabito, Reinaldo

Abstract

This study deals with industrial processes that produce soft drink bottles in different flavours and sizes, carried out in two synchronised production stages: liquid preparation and bottling. Four single-stage formulations are proposed to solve the synchronised two-stage lot sizing and scheduling problem in soft drink production synchronising the first stage's syrup lots in tanks with the second stage's soft drink lots on bottling lines. The first two formulations are variants of the General Lot Sizing and Scheduling Problem (GLSP) with sequence-dependent setup times and costs, while the other two are based on the Asymmetric Travelling Salesman Problem (ATSP) with different subtour elimination constraints. All models are computationally tested and compared to the original two-stage formulation introduced in Ferreira et al. (2009), using data based on a real-world bottling plant. The results show not only the superiority of the single-stage models if compared to the two-stage formulation, but also the much faster solution times of the ATSP-based models.

Suggested Citation

  • Ferreira, Deisemara & Clark, Alistair R. & Almada-Lobo, Bernardo & Morabito, Reinaldo, 2012. "Single-stage formulations for synchronised two-stage lot sizing and scheduling in soft drink production," International Journal of Production Economics, Elsevier, vol. 136(2), pages 255-265.
  • Handle: RePEc:eee:proeco:v:136:y:2012:i:2:p:255-265
    DOI: 10.1016/j.ijpe.2011.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527311004919
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meyr, H., 2000. "Simultaneous lotsizing and scheduling by combining local search with dual reoptimization," European Journal of Operational Research, Elsevier, vol. 120(2), pages 311-326, January.
    2. Almada-Lobo, Bernardo & Oliveira, José F. & Carravilla, Maria Antónia, 2008. "Production planning and scheduling in the glass container industry: A VNS approach," International Journal of Production Economics, Elsevier, vol. 114(1), pages 363-375, July.
    3. Meyr, H., 2000. "Simultaneous Lotsizing and Scheduling by combining Local Search with Dual Reoptimization," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 39380, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    4. Helber, Stefan & Sahling, Florian, 2010. "A fix-and-optimize approach for the multi-level capacitated lot sizing problem," International Journal of Production Economics, Elsevier, vol. 123(2), pages 247-256, February.
    5. Robinson, Powell & Narayanan, Arunachalam & Sahin, Funda, 2009. "Coordinated deterministic dynamic demand lot-sizing problem: A review of models and algorithms," Omega, Elsevier, vol. 37(1), pages 3-15, February.
    6. Sungmin Kang & Kavindra Malik & L. Joseph Thomas, 1999. "Lotsizing and Scheduling on Parallel Machines with Sequence-Dependent Setup Costs," Management Science, INFORMS, vol. 45(2), pages 273-289, February.
    7. Stadtler, Hartmut, 2011. "Multi-level single machine lot-sizing and scheduling with zero lead times," European Journal of Operational Research, Elsevier, vol. 209(3), pages 241-252, March.
    8. Tempelmeier, Horst & Buschkühl, Lisbeth, 2008. "Dynamic multi-machine lotsizing and sequencing with simultaneous scheduling of a common setup resource," International Journal of Production Economics, Elsevier, vol. 113(1), pages 401-412, May.
    9. Gabriel R. Bitran & Horacio H. Yanasse, 1982. "Computational Complexity of the Capacitated Lot Size Problem," Management Science, INFORMS, vol. 28(10), pages 1174-1186, October.
    10. Kovcs, Andrs & Brown, Kenneth N. & Tarim, S. Armagan, 2009. "An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups," International Journal of Production Economics, Elsevier, vol. 118(1), pages 282-291, March.
    11. Fandel, Gunter & Stammen-Hegene, Cathrin, 2006. "Simultaneous lot sizing and scheduling for multi-product multi-level production," International Journal of Production Economics, Elsevier, vol. 104(2), pages 308-316, December.
    12. Haase, Knut & Kimms, Alf, 2000. "Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities," International Journal of Production Economics, Elsevier, vol. 66(2), pages 159-169, June.
    13. Toledo, Franklina Maria Bragion & Armentano, Vinicius Amaral, 2006. "A Lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1070-1083, December.
    14. Ferreira, Deisemara & Morabito, Reinaldo & Rangel, Socorro, 2009. "Solution approaches for the soft drink integrated production lot sizing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 697-706, July.
    15. Meyr, H., 2002. "Simultaneous Lotsizing and Scheduling on Parallel Machines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36065, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Fleischmann, Bernhard, 1990. "The discrete lot-sizing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 44(3), pages 337-348, February.
    17. Fleischmann, B. & Meyr, H., 1997. "The General Lotsizing and Scheduling Problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36068, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Drexl, A. & Kimms, A., 1997. "Lot sizing and scheduling -- Survey and extensions," European Journal of Operational Research, Elsevier, vol. 99(2), pages 221-235, June.
    19. Drexl, Andreas & Haase, Knut, 1995. "Proportional lotsizing and scheduling," International Journal of Production Economics, Elsevier, vol. 40(1), pages 73-87, June.
    20. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    21. Meyr, Herbert, 2002. "Simultaneous lotsizing and scheduling on parallel machines," European Journal of Operational Research, Elsevier, vol. 139(2), pages 277-292, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:proeco:v:202:y:2018:i:c:p:123-131 is not listed on IDEAS
    2. Bruno, Giuseppe & Genovese, Andrea & Piccolo, Carmela, 2014. "The capacitated Lot Sizing model: A powerful tool for logistics decision making," International Journal of Production Economics, Elsevier, vol. 155(C), pages 380-390.
    3. Gicquel, C. & Lisser, A. & Minoux, M., 2014. "An evaluation of semidefinite programming based approaches for discrete lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 498-507.
    4. Karina Copil & Martin Wörbelauer & Herbert Meyr & Horst Tempelmeier, 2017. "Simultaneous lotsizing and scheduling problems: a classification and review of models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 1-64, January.
    5. Meyr, Herbert & Mann, Matthias, 2013. "A decomposition approach for the General Lotsizing and Scheduling Problem for Parallel production Lines," European Journal of Operational Research, Elsevier, vol. 229(3), pages 718-731.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:136:y:2012:i:2:p:255-265. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.