IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v669y2025ics0378437125002705.html
   My bibliography  Save this article

An effective method for profiling core–periphery structures in complex networks

Author

Listed:
  • Nie, Jiaqi
  • Xuan, Qi
  • Gao, Dehong
  • Ruan, Zhongyuan

Abstract

Profiling core–periphery structures in networks has attracted significant attention, leading to the development of various methods. Among these, the rich-core method is distinguished for being entirely parameter-free and scalable to large networks. However, the cores it identifies are not always structurally cohesive, as they may lack high link density. Here, we propose an improved method building upon the rich-core framework. Instead of relying on node degree, our approach incorporates both the node’s coreness k and its centrality within the k-core. We apply the approach to twelve real-world networks, and find that the cores identified are generally denser compared to those derived from the rich-core method. Additionally, we demonstrate that the proposed method provides a natural way for identifying an exceptionally dense core, i.e., a clique, which often approximates or even matches the maximum clique in many real-world networks. Furthermore, we extend the method to multiplex networks, and show its effectiveness in identifying dense multiplex cores across several well-studied datasets. Our study may offer valuable insights into exploring the meso-scale properties of complex networks.

Suggested Citation

  • Nie, Jiaqi & Xuan, Qi & Gao, Dehong & Ruan, Zhongyuan, 2025. "An effective method for profiling core–periphery structures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 669(C).
  • Handle: RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002705
    DOI: 10.1016/j.physa.2025.130618
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125002705
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130618?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Giorgio Fagiolo & Javier Reyes & Stefano Schiavo, 2010. "The evolution of the world trade web: a weighted-network analysis," Journal of Evolutionary Economics, Springer, vol. 20(4), pages 479-514, August.
    2. Matthew Elliott & Benjamin Golub & Matthew O. Jackson, 2014. "Financial Networks and Contagion," American Economic Review, American Economic Association, vol. 104(10), pages 3115-3153, October.
    3. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    4. Athen Ma & Raúl J Mondragón, 2015. "Rich-Cores in Networks," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arribas, Iván & Peiró-Palomino, Jesús & Tortosa-Ausina, Emili, 2020. "Is full banking integration desirable?," Journal of Banking & Finance, Elsevier, vol. 112(C).
    2. Bhattacharya, Mita & Inekwe, John Nkwoma & Valenzuela, Maria Rebecca, 2018. "Financial integration in Africa: New evidence using network approach," Economic Modelling, Elsevier, vol. 72(C), pages 379-390.
    3. C'elestin Coquid'e & Jos'e Lages & Dima L. Shepelyansky, 2020. "Crisis contagion in the world trade network," Papers 2002.07100, arXiv.org.
    4. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    5. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    6. Fredy Cepeda-Lopez & Fredy Gamboa-Estrada & Carlos Leon-Rinc�n & Hern�n Rincon-Castro, 2022. "Colombian Liberalization and Integration into World Trade Markets: Much Ado about Nothing," Revista de Economía del Rosario, Universidad del Rosario, vol. 25(2), pages 1-44.
    7. Aldasoro, Iñaki & Delli Gatti, Domenico & Faia, Ester, 2017. "Bank networks: Contagion, systemic risk and prudential policy," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 164-188.
    8. Miao He & Yanhong Guo, 2022. "Systemic Risk Contributions of Financial Institutions during the Stock Market Crash in China," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    9. Ersahin, Nuri & Giannetti, Mariassunta & Huang, Ruidi, 2024. "Trade credit and the stability of supply chains," Journal of Financial Economics, Elsevier, vol. 155(C).
    10. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Rezvanian, Alireza & Meybodi, Mohammad Reza, 2015. "Sampling social networks using shortest paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 254-268.
    12. Franz Reiter & Dominika Langenmayr & Svea Holtmann, 2021. "Avoiding taxes: banks’ use of internal debt," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(3), pages 717-745, June.
    13. Gabrielle Demange, 2018. "Contagion in Financial Networks: A Threat Index," Management Science, INFORMS, vol. 64(2), pages 955-970, February.
    14. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    15. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    16. Li, Fei & Kang, Hao & Xu, Jingfeng, 2022. "Financial stability and network complexity: A random matrix approach," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 177-185.
    17. Carattini, Stefano & Fankhauser, Sam & Gao, Jianjian & Gennaioli, Caterina & Panzarasa, Pietro, 2023. "What does network analysis teach us about international environmental cooperation?," Ecological Economics, Elsevier, vol. 205(C).
    18. Feng, Runhuan & Liu, Ming & Zhang, Ning, 2024. "A unified theory of decentralized insurance," Insurance: Mathematics and Economics, Elsevier, vol. 119(C), pages 157-178.
    19. Ahelegbey, Daniel Felix & Giudici, Paolo & Hashem, Shatha Qamhieh, 2021. "Network VAR models to measure financial contagion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    20. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:669:y:2025:i:c:s0378437125002705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.