IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v534y2019ics0378437119312622.html
   My bibliography  Save this article

A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods

Author

Listed:
  • Çevik, Hasan Hüseyin
  • Çunkaş, Mehmet
  • Polat, Kemal

Abstract

In this study, a new forecast model consist of three stages is proposed for the next hour wind power. In the first stage, wind speed, wind direction, and wind power have been forecasted by using historical data. Artificial Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN) and Support Vector Regression (SVR) have been chosen as forecast methods, while Empirical Mode Decomposition (EMD) and Stationary Wavelet Decomposition (SWD) methods have been preferred as pre-processing methods. The other two stages have been used to improve the wind power forecast value obtained at the end of the first stage. In the second stage, the forecast values found in the first stage have been applied to the same forecast methods, and wind power forecast value has been updated. In the third stage, a correction process is applied, and the final forecast value is obtained. While four-year data are selected as train data, two-year data are tested. SWD-ANFIS has given the best results in the first stage while ANN has given the best result in the second stage. Finally, the ensemble result has been found by taking the weighted average of the results of the three methods. Mean Absolute Error (MAE) values found at each stage are the 0.333, 0.294 and 0.278, respectively. The obtained results have been compared with literature studies. The results show that the proposed multistage forecast model is capable of wind power forecasting efficiently and produce very close values to the actual data.

Suggested Citation

  • Çevik, Hasan Hüseyin & Çunkaş, Mehmet & Polat, Kemal, 2019. "A new multistage short-term wind power forecast model using decomposition and artificial intelligence methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
  • Handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312622
    DOI: 10.1016/j.physa.2019.122177
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119312622
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122177?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
    2. Haße, Hendrik & Li, Bin & Weißenberg, Norbert & Cirullies, Jan & Otto, Boris, 2019. "Digital twin for real-time data processing in logistics," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg Int, volume 27, pages 4-28, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    3. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2017. "Insuring wind energy production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 542-553.
    4. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2014. "Wind speed and energy forecasting at different time scales: A nonparametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 59-66.
    5. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    6. Nibaldo Rodríguez & Claudio Cubillos & José-Miguel Rubio, 2014. "Multi-Step-Ahead Forecasting Model for Monthly Anchovy Catches Based on Wavelet Analysis," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-8, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
    2. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    3. Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Yan Hong & Ding Wang & Jingming Su & Maowei Ren & Wanqiu Xu & Yuhao Wei & Zhen Yang, 2023. "Short-Term Power Load Forecasting in Three Stages Based on CEEMDAN-TGA Model," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    5. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Kıyan, Emel, 2022. "Wind power conversion system model identification using adaptive neuro-fuzzy inference systems: A case study," Energy, Elsevier, vol. 239(PB).
    6. Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
    7. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo D’Amico & Fulvio Gismondi & Filippo Petroni, 2020. "Insurance Contracts for Hedging Wind Power Uncertainty," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    2. Amelio, Andrea & Giardino-Karlinger, Liliane & Valletti, Tommaso, 2020. "Exclusionary pricing in two-sided markets," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    3. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    4. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    5. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    6. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    7. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    8. Shengli Liao & Xudong Tian & Benxi Liu & Tian Liu & Huaying Su & Binbin Zhou, 2022. "Short-Term Wind Power Prediction Based on LightGBM and Meteorological Reanalysis," Energies, MDPI, vol. 15(17), pages 1-21, August.
    9. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    10. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    11. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    12. Sangseop Lim & Chang-hee Lee & Won-Ju Lee & Junghwan Choi & Dongho Jung & Younghun Jeon, 2022. "Valuation of the Extension Option in Time Charter Contracts in the LNG Market," Energies, MDPI, vol. 15(18), pages 1-14, September.
    13. Bontempi, Gianluca & Ben Taieb, Souhaib, 2011. "Conditionally dependent strategies for multiple-step-ahead prediction in local learning," International Journal of Forecasting, Elsevier, vol. 27(3), pages 689-699, July.
    14. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    15. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    16. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    17. Roman Matkovskyy & Taoufik Bouraoui, 2019. "Application of Neural Networks to Short Time Series Composite Indexes: Evidence from the Nonlinear Autoregressive with Exogenous Inputs (NARX) Model," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(2), pages 433-446, June.
    18. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    19. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    20. CIOBANU Dumitru & BAR Mary Violeta, 2013. "On The Prediction Of Exchange Rate Dollar/Euro With An Svm Model," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 65(2), pages 91-109.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:534:y:2019:i:c:s0378437119312622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.