IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp1400-1418.html
   My bibliography  Save this article

Increasing awareness in classroom evacuation situations using agent-based modeling

Author

Listed:
  • Delcea, Camelia
  • Cotfas, Liviu-Adrian

Abstract

Educational properties have recorded an average of 4980 structure fires between 2011 and 2015 according to US National Fire Protection Association. It has been determined that four out of five fires in schools have occurred between 6 a.m. and 6 p.m., when pupils were around. Even though the percentage of structure fires in educational properties has fallen over the years, there is still place for improvement and knowing how to react in such situations can contribute to reducing pupils’ injuries and also to their lifesaving. Thus, the present paper analysis the possibility of using agent-based simulations in NetLogo for a classroom with two exits in order to increase pupils’ awareness on how to act during an evacuation process caused by a fire. Based on an empirical study, it has been observed that after presenting the NetLogo evacuation simulation, the pupils’ awareness has increased with up to 22.99%, having a direct result on the overall evacuation time and their safety.

Suggested Citation

  • Delcea, Camelia & Cotfas, Liviu-Adrian, 2019. "Increasing awareness in classroom evacuation situations using agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1400-1418.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1400-1418
    DOI: 10.1016/j.physa.2019.04.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119304984
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.04.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huan-Huan, Tian & Li-Yun, Dong & Yu, Xue, 2015. "Influence of the exits’ configuration on evacuation process in a room without obstacle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 164-178.
    2. Yang, Xiaoxia & Dong, Hairong & Yao, Xiuming & Sun, Xubin & Wang, Qianling & Zhou, Min, 2016. "Necessity of guides in pedestrian emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 397-408.
    3. Song, Xiao & Zhang, Zenghui & Peng, Gongzhuang & Shi, Guoqiang, 2017. "Effect of authority figures for pedestrian evacuation at metro stations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 599-612.
    4. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani & Alhalabi, Wael, 2014. "Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1105-1118.
    5. Chen, Liang & Tang, Tie-Qiao & Huang, Hai-Jun & Song, Ziqi, 2018. "Elementary students’ evacuation route choice in a classroom: A questionnaire-based method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1066-1074.
    6. Ha, Vi & Lykotrafitis, George, 2012. "Agent-based modeling of a multi-room multi-floor building emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2740-2751.
    7. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    8. Zhang, Jun & Song, Weiguo & Xu, Xuan, 2008. "Experiment and multi-grid modeling of evacuation from a classroom," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5901-5909.
    9. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2011. "Collection, spillback, and dissipation in pedestrian evacuation: A network-based method," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 490-506, March.
    10. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    11. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    12. Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
    13. Sticco, I.M. & Frank, G.A. & Cerrotta, S. & Dorso, C.O., 2017. "Room evacuation through two contiguous exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 172-185.
    14. Tang, Tie-Qiao & Chen, Liang & Guo, Ren-Yong & Shang, Hua-Yan, 2015. "An evacuation model accounting for elementary students’ individual properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 49-56.
    15. Dossetti, V. & Bouzat, S. & Kuperman, M.N., 2017. "Behavioral effects in room evacuation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 193-202.
    16. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.
    17. Lim Eng Aik & Tan Wee Choon, 2012. "Simulating Evacuations with Obstacles Using a Modified Dynamic Cellular Automata Model," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-17, June.
    18. Cornes, F.E. & Frank, G.A. & Dorso, C.O., 2017. "High pressures in room evacuation processes and a first approach to the dynamics around unconscious pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 282-298.
    19. Li, Wenhang & Li, Yi & Yu, Ping & Gong, Jianhua & Shen, Shen & Huang, Lin & Liang, Jianming, 2017. "Modeling, simulation and analysis of the evacuation process on stairs in a multi-floor classroom building of a primary school," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 157-172.
    20. Li, Yan & Liu, Hong & Liu, Guang-peng & Li, Liang & Moore, Philip & Hu, Bin, 2017. "A grouping method based on grid density and relationship for crowd evacuation simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 319-336.
    21. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    22. Tang, Tie-Qiao & Shao, Yi-Xiao & Chen, Liang, 2017. "Modeling pedestrian movement at the hall of high-speed railway station during the check-in process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 157-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Shiyu & Huang, Ping & Wang, Wei, 2022. "An optimization method for evacuation guidance under limited visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Wang, Senlei & Correia, Gonçalo Homem de Almeida & Lin, Hai Xiang, 2022. "Modeling the competition between multiple Automated Mobility on-Demand operators: An agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    3. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.
    4. Liu, Qiong & He, Renfei & Zhang, Limao, 2022. "Simulation-based multi-objective optimization for enhanced safety of fire emergency response in metro stations," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
    2. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    3. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    4. Haghani, Milad & Sarvi, Majid, 2017. "Stated and revealed exit choices of pedestrian crowd evacuees," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 238-259.
    5. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    6. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    7. Li, Shengnan & Li, Xingang & Qu, Yunchao & Jia, Bin, 2015. "Block-based floor field model for pedestrian’s walking through corner," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 337-353.
    8. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    9. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    10. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    11. Tian, Huan-huan & Wei, Yan-fang & Dong, Li-yun & Xue, Yu & Zheng, Rong-sen, 2018. "Resolution of conflicts in cellular automaton evacuation model with the game-theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 991-1006.
    12. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    13. Li, Xingli & Guo, Fang & Kuang, Hua & Geng, Zhongfei & Fan, Yanhong, 2019. "An extended cost potential field cellular automaton model for pedestrian evacuation considering the restriction of visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 47-56.
    14. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    15. Haghani, Milad & Sarvi, Majid, 2017. "Social dynamics in emergency evacuations: Disentangling crowd’s attraction and repulsion effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 24-34.
    16. Gao, Fengqiang & Yan, Yuyue & Chen, Zhihao & Zheng, Linxiao & Ren, Huan, 2022. "Effect of density control in partially observable asymmetric-exit evacuation under guidance: Strategic suggestion under time delay," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    17. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    18. Huang, Rong & Zhao, Xuan & Zhou, Chenyu & Kong, Lingchen & Liu, Chengqing & Yu, Qiang, 2022. "Static floor field construction and fine discrete cellular automaton model: Algorithms, simulations and insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    19. Zhang, Jianxin & Liu, Hong & Li, Yan & Qin, Xin & Wang, Shouna, 2018. "Video-driven group behavior simulation based on social comparison theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 620-634.
    20. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Route choice in the pedestrian evacuation: Microscopic formulation based on visual information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1400-1418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.