IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v506y2018icp305-323.html
   My bibliography  Save this article

The effect of dedicated exit on the evacuation of heterogeneous pedestrians

Author

Listed:
  • Liu, Qian

Abstract

A social force model is proposed in this paper to study the effect of dedicated exit on the evacuation of heterogeneous pedestrians in a public place. In this model, pedestrians are divided into two groups—powerful pedestrians and weak pedestrians, who have different walking abilities. Several exit design schemes are compared through simulations in a regular room. The main results are: (1) Building a new exit as weak group’s dedicated exit can simultaneously reduce each group’s average evacuation time and maximum evacuation time. (2) Reconstructing an existing ordinary exit as weak group’s dedicated exit can reduce weak pedestrians’ average evacuation time but may increase their maximum evacuation time. (3) If the total number of exits is fixed, compared with the non-dedicated exit scheme, the scheme which designs dedicated exits for each group separately may reduce weak group’s evacuation speed. (4) If the sum of widths of all the exits is fixed, the ratio of width between the dedicated exit and the ordinary exit has a significant effect on each group’s evacuation. The optimal ratio depends on the proportion of weak pedestrians. Finally, a real-world example which involves the evacuation issue in a waiting hall with security checkpoints is used to show the effectiveness of women-only exits in improving the crowd evacuation efficiency. Particularly, it is found that a suitable women-only exit scheme can achieve a win-win situation for both male pedestrians and female pedestrians in the crowd evacuation.

Suggested Citation

  • Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
  • Handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:305-323
    DOI: 10.1016/j.physa.2018.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118304692
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
    2. Shang, Hua-Yan & Huang, Hai-Jun & Zhang, Yi-Ming, 2015. "An extended mobile lattice gas model allowing pedestrian step size variable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 283-293.
    3. Tang, Tie-Qiao & Chen, Liang & Guo, Ren-Yong & Shang, Hua-Yan, 2015. "An evacuation model accounting for elementary students’ individual properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 49-56.
    4. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    5. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    6. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    7. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    8. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2012. "Route choice in pedestrian evacuation under conditions of good and zero visibility: Experimental and simulation results," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 669-686.
    9. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    10. Guo, Ren-Yong & Huang, Hai-Jun & Wong, S.C., 2011. "Collection, spillback, and dissipation in pedestrian evacuation: A network-based method," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 490-506, March.
    11. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
    12. Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
    13. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    14. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    15. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2004. "Dynamic user-optimal assignment in continuous time and space," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 571-592, August.
    16. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    17. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    18. Shao, Zhi-Gang & Yang, Yan-Yan, 2015. "Effective strategies of collective evacuation from an enclosed space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 34-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Yixuan & Zhang, Yixing & Xu, Yifei & Wang, Shu & Liu, Jianguo & Jin, Longzhe & Ou, Shengnan & Pan, Song & Liu, Yiqiao, 2024. "Impact of risk preferences on evacuee behavior and attention distribution in urban underground space evacuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    2. Yixuan Wei & Jianguo Liu & Longzhe Jin & Shu Wang & Fei Deng & Shengnan Ou & Song Pan & Jinshun Wu, 2023. "Individual Behavior and Attention Distribution during Wayfinding for Emergency Shelter: An Eye-Tracking Study," Sustainability, MDPI, vol. 15(15), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    2. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    3. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.
    4. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    5. Leng, Biao & Wang, Jianyuan & Zhao, Wenyuan & Xiong, Zhang, 2014. "An extended floor field model based on regular hexagonal cells for pedestrian simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 119-133.
    6. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    7. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    8. Zou, Baobao & Lu, Chunxia & Mao, Shirong & Li, Yi, 2020. "Effect of pedestrian judgement on evacuation efficiency considering hesitation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    9. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    10. Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
    11. Cao, Shuchao & Song, Weiguo & Lv, Wei & Fang, Zhiming, 2015. "A multi-grid model for pedestrian evacuation in a room without visibility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 45-61.
    12. Fu, Zhijian & Luo, Lin & Yang, Yue & Zhuang, Yifan & Zhang, Peitong & Yang, Lizhong & Yang, Hongtai & Ma, Jian & Zhu, Kongjin & Li, Yanlai, 2016. "Effect of speed matching on fundamental diagram of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 31-42.
    13. Guo, Fang & Li, Xingli & Kuang, Hua & Bai, Yang & Zhou, Huaguo, 2016. "An extended cost potential field cellular automata model considering behavior variation of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 630-640.
    14. Ji, Jingwei & Lu, Ligang & Jin, Zihao & Wei, Shoupeng & Ni, Lu, 2018. "A cellular automata model for high-density crowd evacuation using triangle grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1034-1045.
    15. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    16. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    17. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    18. Zhang, Wenke & Zhang, Zhichao & Ma, Yueyao & Lee, Eric Wai Ming & Shi, Meng, 2024. "Psychological impatience in pedestrian evacuation: modelling, simulations and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    19. Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
    20. Wu, Pei-Yang & Guo, Ren-Yong, 2021. "Simulation of pedestrian flows through queues: Effect of interaction and intersecting angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:506:y:2018:i:c:p:305-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.