IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v450y2016icp333-341.html
   My bibliography  Save this article

Effective leadership for crowd evacuation

Author

Listed:
  • Ma, Yi
  • Yuen, Richard Kwok Kit
  • Lee, Eric Wai Ming

Abstract

Evacuation leaders (individuals guiding the crowd) can make crowd evacuation more efficient. Selecting their number and positions within the crowd is particularly important when the other evacuees are not familiar with the internal layout of the building. This paper investigates the effects of leadership on crowd evacuation in rooms with limited visibility range by an extended social force model. We find that, (i) For a large evacuees crowd, a small proportion of the evacuation leaders is already sufficient to guide the whole crowd efficiently, even if the visibility range of the room is very limited. And the smaller the crowd size, the larger the proportion of the leaders is needed to achieve a satisfactory evacuation guidance. (ii) The optimal proportion or number (i.e., the proportion or number that is necessary for guiding the crowd) of the leaders in an evacuees crowd to achieve a satisfactory guidance is related to the visibility range of the room and the distribution range of the evacuees crowd. (iii) Leadership is not always positive to the crowd evacuation. It may have a negative effect on crowd evacuation when the visibility range of the room and the size of the evacuees crowd are large enough. The findings provide a new insight into the effects of leadership on crowd evacuation.

Suggested Citation

  • Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
  • Handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:333-341
    DOI: 10.1016/j.physa.2015.12.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115011401
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.12.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, R.Y. & Huang, H.J., 2008. "A mobile lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 580-586.
    2. Ha, Vi & Lykotrafitis, George, 2012. "Agent-based modeling of a multi-room multi-floor building emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2740-2751.
    3. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    4. Yuan, Weifeng & Tan, Kang Hai, 2011. "A model for simulation of crowd behaviour in the evacuation from a smoke-filled compartment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4210-4218.
    5. Wang, Ziyang & Song, Bingxue & Qin, Yong & Zhu, Wei & Jia, Limin, 2013. "Effect of vertical grouping behavior on pedestrian evacuation efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4874-4883.
    6. Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
    7. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    8. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    9. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
    10. Kirchner, Ansgar & Klüpfel, Hubert & Nishinari, Katsuhiro & Schadschneider, Andreas & Schreckenberg, Michael, 2003. "Simulation of competitive egress behavior: comparison with aircraft evacuation data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 689-697.
    11. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    12. Zhao, Daoliang & Yang, Lizhong & Li, Jian, 2008. "Occupants’ behavior of going with the crowd based on cellular automata occupant evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3708-3718.
    13. Parisi, D.R. & Dorso, C.O., 2005. "Microscopic dynamics of pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 606-618.
    14. Liu, Shaobo & Yang, Lizhong & Fang, Tingyong & Li, Jian, 2009. "Evacuation from a classroom considering the occupant density around exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(9), pages 1921-1928.
    15. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    16. Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
    17. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Shiyu & Huang, Ping & Wang, Wei, 2022. "An optimization method for evacuation guidance under limited visual field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    2. Guo, Fang & Li, Xingli & Kuang, Hua & Bai, Yang & Zhou, Huaguo, 2016. "An extended cost potential field cellular automata model considering behavior variation of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 630-640.
    3. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    4. Ji, Jingwei & Lu, Ligang & Jin, Zihao & Wei, Shoupeng & Ni, Lu, 2018. "A cellular automata model for high-density crowd evacuation using triangle grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1034-1045.
    5. Li, Lihua & Ding, Ning & Ma, Yaping & Zhang, Hui & Jin, Hua, 2020. "Social Relation Network and group behavior based on evacuation experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Ren, Huan & Yan, Yuyue & Gao, Fengqiang, 2021. "Variable guiding strategies in multi-exits evacuation: Pursuing balanced pedestrian densities," Applied Mathematics and Computation, Elsevier, vol. 397(C).
    7. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    8. Delcea, Camelia & Cotfas, Liviu-Adrian, 2019. "Increasing awareness in classroom evacuation situations using agent-based modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1400-1418.
    9. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    10. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    11. Gao, Fengqiang & Yan, Yuyue & Chen, Zhihao & Zheng, Linxiao & Ren, Huan, 2022. "Effect of density control in partially observable asymmetric-exit evacuation under guidance: Strategic suggestion under time delay," Applied Mathematics and Computation, Elsevier, vol. 418(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    2. Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
    3. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    4. Wang, Jinhuan & Zhang, Lei & Shi, Qiongyu & Yang, Peng & Hu, Xiaoming, 2015. "Modeling and simulating for congestion pedestrian evacuation with panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 396-409.
    5. Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
    6. Guan, Junbiao & Wang, Kaihua & Chen, Fangyue, 2016. "A cellular automaton model for evacuation flow using game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 655-661.
    7. Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    8. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    9. Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
    10. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    11. Khamis, Nurulaqilla & Selamat, Hazlina & Ismail, Fatimah Sham & Lutfy, Omar Farouq & Haniff, Mohamad Fadzli & Nordin, Ili Najaa Aimi Mohd, 2020. "Optimized exit door locations for a safer emergency evacuation using crowd evacuation model and artificial bee colony optimization," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    12. Ha, Vi & Lykotrafitis, George, 2012. "Agent-based modeling of a multi-room multi-floor building emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2740-2751.
    13. Srinivasan, Aravinda Ramakrishnan & Karan, Farshad Salimi Naneh & Chakraborty, Subhadeep, 2017. "Pedestrian dynamics with explicit sharing of exit choice during egress through a long corridor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 770-782.
    14. Suma, Yushi & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2012. "Anticipation effect in pedestrian dynamics: Modeling and experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 248-263.
    15. Shang, Hua-Yan & Huang, Hai-Jun & Zhang, Yi-Ming, 2015. "An extended mobile lattice gas model allowing pedestrian step size variable," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 283-293.
    16. Li, Lin & Yu, Zhonghai & Chen, Yang, 2014. "Evacuation dynamic and exit optimization of a supermarket based on particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 157-172.
    17. Li, Shuang & Zhai, Changhai & Xie, Lili, 2015. "Occupant evacuation and casualty estimation in a building under earthquake using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 152-167.
    18. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    19. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
    20. Ji, Jingwei & Lu, Ligang & Jin, Zihao & Wei, Shoupeng & Ni, Lu, 2018. "A cellular automata model for high-density crowd evacuation using triangle grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1034-1045.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:450:y:2016:i:c:p:333-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.