Machine learning-enhanced dynamic path decisions for emergency stewards in emergency evacuations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2025.130561
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Parisi, D.R. & Dorso, C.O., 2007. "Morphological and dynamical aspects of the room evacuation process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(1), pages 343-355.
- Yang, Xiaoxia & Dong, Hairong & Yao, Xiuming & Sun, Xubin & Wang, Qianling & Zhou, Min, 2016. "Necessity of guides in pedestrian emergency evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 397-408.
- Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani & Alhalabi, Wael, 2014. "Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1105-1118.
- Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Said Salhi, 2014. "Handbook of Metaheuristics (2nd edition)," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(2), pages 320-320, February.
- Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
- Parisi, D.R. & Dorso, C.O., 2005. "Microscopic dynamics of pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 606-618.
- Yang, Xiaoxia & Yang, Xiaoli & Wang, Qianling & Kang, Yuanlei & Pan, Fuquan, 2020. "Guide optimization in pedestrian emergency evacuation," Applied Mathematics and Computation, Elsevier, vol. 365(C).
- Gao, Fengqiang & Yan, Yuyue & Chen, Zhihao & Zheng, Linxiao & Ren, Huan, 2022. "Effect of density control in partially observable asymmetric-exit evacuation under guidance: Strategic suggestion under time delay," Applied Mathematics and Computation, Elsevier, vol. 418(C).
- Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
- Guo, Xiwei & Chen, Jianqiao & Zheng, Yaochen & Wei, Junhong, 2012. "A heterogeneous lattice gas model for simulating pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 582-592.
- Yamamoto, Kazuhiro & Kokubo, Satoshi & Nishinari, Katsuhiro, 2007. "Simulation for pedestrian dynamics by real-coded cellular automata (RCA)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 654-660.
- Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
- Hou, Lei & Liu, Jian-Guo & Pan, Xue & Wang, Bing-Hong, 2014. "A social force evacuation model with the leadership effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 400(C), pages 93-99.
- Sticco, I.M. & Frank, G.A. & Cerrotta, S. & Dorso, C.O., 2017. "Room evacuation through two contiguous exits," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 172-185.
- Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
- Zhao, Ruifeng & Zhai, Yue & Qu, Lu & Wang, Ruhao & Huang, Yaoying & Dong, Qi, 2021. "A continuous floor field cellular automata model with interaction area for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
- Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
- Yanyan Niu & Jia Yu & Dawei Lu & Renwu Mu & Jiahong Wen, 2022. "Spatial Allocation Method of Evacuation Guiders in Urban Open Public Spaces: A Case Study of Binjiang Green Space in Xuhui District, Shanghai, China," IJERPH, MDPI, vol. 19(19), pages 1-25, September.
- Huang, Keke & Zheng, Xiaoping & Cheng, Yuan & Yang, Yeqing, 2017. "Behavior-based cellular automaton model for pedestrian dynamics," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 417-424.
- Ma, Yi & Yuen, Richard Kwok Kit & Lee, Eric Wai Ming, 2016. "Effective leadership for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 333-341.
- Zheng, Ying & Li, Xingang & Zhu, Nuo & Jia, Bin & Jiang, Rui, 2018. "Evacuation dynamics with smoking diffusion in three dimension based on an extended Floor-Field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 414-426.
- Gao, Fengqiang & Yan, Yuyue & Chen, Zhihao & Zheng, Linxiao & Ren, Huan, 2022. "Effect of density control in partially observable asymmetric-exit evacuation under guidance: Strategic suggestion under time delay," Applied Mathematics and Computation, Elsevier, vol. 418(C).
- Miyagawa, Daiki & Ichinose, Genki, 2020. "Cellular automaton model with turning behavior in crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
- Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
- Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
- Zheng, Xiaoping & Li, Wei & Guan, Chao, 2010. "Simulation of evacuation processes in a square with a partition wall using a cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2177-2188.
- Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
- Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
- Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
- Cirillo, Emilio N.M. & Muntean, Adrian, 2013. "Dynamics of pedestrians in regions with no visibility— A lattice model without exclusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3578-3588.
- Zheng, Ying & Jia, Bin & Li, Xin-Gang & Zhu, Nuo, 2011. "Evacuation dynamics with fire spreading based on cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3147-3156.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:667:y:2025:i:c:s0378437125002134. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.