IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i1p107-116.html
   My bibliography  Save this article

Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets

Author

Listed:
  • Dupoyet, B.
  • Fiebig, H.R.
  • Musgrove, D.P.

Abstract

We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.

Suggested Citation

  • Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2010. "Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 107-116.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:1:p:107-116
    DOI: 10.1016/j.physa.2009.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109007377
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    2. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    3. Kirill Ilinski & Alexander Stepanenko, 1998. "Electrodynamical model of quasi-efficient financial market," Finance 9805007, University Library of Munich, Germany.
    4. Bartolozzi, M. & Leinweber, D.B. & Thomas, A.W., 2006. "Scale-free avalanche dynamics in the stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 132-139.
    5. M. Bartolozzi & D. B. Leinweber & A. W. Thomas, 2006. "Scale-free avalanche dynamics in the stock market," Papers physics/0601171, arXiv.org, revised Jun 2006.
    6. Bidarkota, Prasad V. & Dupoyet, Brice V., 2007. "The impact of fat tails on equilibrium rates of return and term premia," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 887-905, March.
    7. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Dupoyet & H. R. Fiebig & D. P. Musgrove, 2010. "Replicating financial market dynamics with a simple self-organized critical lattice model," Papers 1010.4831, arXiv.org.
    2. Paolinelli, Giovanni & Arioli, Gianni, 2018. "A path integral based model for stocks and order dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 387-399.
    3. Giovanni Paolinelli & Gianni Arioli, 2018. "A model for stocks dynamics based on a non-Gaussian path integral," Papers 1809.01342, arXiv.org, revised Oct 2018.
    4. Simone Farinelli & Hideyuki Takada, 2014. "Credit Bubbles in Arbitrage Markets: The Geometric Arbitrage Approach to Credit Risk," Papers 1406.6805, arXiv.org, revised Jul 2021.
    5. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2012. "Arbitrage-free self-organizing markets with GARCH properties: Generating them in the lab with a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4350-4363.
    6. Rudolf Fiebig & David Musgrove, 2014. "Testing for Detailed Balance in a Financial Market," Papers 1403.3584, arXiv.org.
    7. Giovanni Paolinelli & Gianni Arioli, 2018. "A path integral based model for stocks and order dynamics," Papers 1803.07904, arXiv.org.
    8. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2011. "Replicating financial market dynamics with a simple self-organized critical lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3120-3135.
    9. Paolinelli, Giovanni & Arioli, Gianni, 2019. "A model for stocks dynamics based on a non-Gaussian path integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 499-514.
    10. Hernández, Juan Antonio & Benito, Rosa Marı´a & Losada, Juan Carlos, 2012. "An adaptive stochastic model for financial markets," Chaos, Solitons & Fractals, Elsevier, vol. 45(6), pages 899-908.
    11. Fiebig, H.R. & Musgrove, D.P., 2015. "Testing for detailed balance in a financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 26-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Paolinelli & Gianni Arioli, 2018. "A path integral based model for stocks and order dynamics," Papers 1803.07904, arXiv.org.
    2. Zitis, Pavlos I. & Contoyiannis, Yiannis & Potirakis, Stelios M., 2022. "Critical dynamics related to a recent Bitcoin crash," International Review of Financial Analysis, Elsevier, vol. 84(C).
    3. M. Bartolozzi & C. Mellen, 2009. "Local Risk Decomposition for High-frequency Trading Systems," Papers 0904.4099, arXiv.org, revised Feb 2011.
    4. Ortega, Diego & Rodríguez-Laguna, Javier & Korutcheva, Elka, 2021. "Avalanches in an extended Schelling model: An explanation of urban gentrification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    5. Giovanni Paolinelli & Gianni Arioli, 2018. "A model for stocks dynamics based on a non-Gaussian path integral," Papers 1809.01342, arXiv.org, revised Oct 2018.
    6. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    7. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    8. Suleyman Basak & Georgy Chabakauri, 2012. "Dynamic Hedging in Incomplete Markets: A Simple Solution," Review of Financial Studies, Society for Financial Studies, vol. 25(6), pages 1845-1896.
    9. Hauser, Shmuel & Kedar-Levy, Haim & Milo, Orit, 2022. "Price discovery during parallel stocks and options preopening: Information distortion and hints of manipulation," Journal of Financial Markets, Elsevier, vol. 59(PA).
    10. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    11. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    12. Lee, Ming-Chih & Chiu, Chien-Liang & Lee, Yen-Hsien, 2007. "Is twin behavior of Nikkei 225 index futures the same?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 199-210.
    13. Luiz Vitiello & Ser-Huang Poon, 2022. "Option pricing with random risk aversion," Review of Quantitative Finance and Accounting, Springer, vol. 58(4), pages 1665-1684, May.
    14. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    15. José Valentim Machado Vicente & Jaqueline Terra Moura Marins, 2019. "A Volatility Smile-Based Uncertainty Index," Working Papers Series 502, Central Bank of Brazil, Research Department.
    16. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    17. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Pricing and hedging contingent claims using variance and higher order moment swaps," Quantitative Finance, Taylor & Francis Journals, vol. 17(4), pages 531-550, April.
    18. Jobst, Andreas A., 2014. "Measuring systemic risk-adjusted liquidity (SRL)—A model approach," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 270-287.
    19. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    20. Ciprian Necula & Gabriel Drimus & Walter Farkas, 2019. "A general closed form option pricing formula," Review of Derivatives Research, Springer, vol. 22(1), pages 1-40, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:1:p:107-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.