IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1809.01342.html
   My bibliography  Save this paper

A model for stocks dynamics based on a non-Gaussian path integral

Author

Listed:
  • Giovanni Paolinelli
  • Gianni Arioli

Abstract

We introduce a model for the dynamics of stock prices based on a non quadratic path integral. The model is a generalization of Ilinski's path integral model, more precisely we choose a different action, which can be tuned to different time scales. The result is a model with a very small number of parameters that provides very good fits of some stock prices and indices fluctuations.

Suggested Citation

  • Giovanni Paolinelli & Gianni Arioli, 2018. "A model for stocks dynamics based on a non-Gaussian path integral," Papers 1809.01342, arXiv.org, revised Oct 2018.
  • Handle: RePEc:arx:papers:1809.01342
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1809.01342
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Montagna, Guido & Nicrosini, Oreste & Moreni, Nicola, 2002. "A path integral way to option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 450-466.
    2. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    3. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2006. "Pricing exotic options in a path integral approach," Quantitative Finance, Taylor & Francis Journals, vol. 6(1), pages 55-66.
    4. Paolinelli, Giovanni & Arioli, Gianni, 2018. "A path integral based model for stocks and order dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 387-399.
    5. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2012. "Arbitrage-free self-organizing markets with GARCH properties: Generating them in the lab with a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4350-4363.
    6. Kleinert, Hagen, 2002. "Stochastic calculus for assets with non-Gaussian price fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 536-562.
    7. Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
    8. Kleinert, Hagen, 2004. "Option pricing for non-Gaussian price fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 151-159.
    9. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2011. "Replicating financial market dynamics with a simple self-organized critical lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(18), pages 3120-3135.
    10. Kleinert, Hagen, 2002. "Option pricing from path integral for non-Gaussian fluctuations. Natural martingale and application to truncated Lèvy distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 217-242.
    11. Bidarkota, Prasad V. & Dupoyet, Brice V., 2007. "The impact of fat tails on equilibrium rates of return and term premia," Journal of Economic Dynamics and Control, Elsevier, vol. 31(3), pages 887-905, March.
    12. Kirill Ilinski, 1997. "Physics of Finance," Papers hep-th/9710148, arXiv.org.
    13. G. Montagna & O. Nicrosini & N. Moreni, 2002. "A Path Integral Way to Option Pricing," Papers cond-mat/0202143, arXiv.org.
    14. Eleonora Bennati & Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach To Derivative Security Pricing I: Formalism And Analytical Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 381-407.
    15. Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach to Derivative Security Pricing: I. Formalism and Analytical Results," Papers cond-mat/9901277, arXiv.org.
    16. Marco Rosa-Clot & Stefano Taddei, 1999. "A Path Integral Approach to Derivative Security Pricing: II. Numerical Methods," Papers cond-mat/9901279, arXiv.org.
    17. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2010. "Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 107-116.
    18. G. Bormetti & G. Montagna & N. Moreni & O. Nicrosini, 2004. "Pricing Exotic Options in a Path Integral Approach," Papers cond-mat/0407321, arXiv.org, revised May 2006.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paolinelli, Giovanni & Arioli, Gianni, 2019. "A model for stocks dynamics based on a non-Gaussian path integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 499-514.
    2. Nicolò Cangiotti, 2024. "Feynman Diagrams beyond Physics: From Biology to Economy," Mathematics, MDPI, vol. 12(9), pages 1-17, April.
    3. Zhao, Jun, 2019. "Nonstationary response of a nonlinear economic cycle model under random disturbance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 409-421.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolinelli, Giovanni & Arioli, Gianni, 2019. "A model for stocks dynamics based on a non-Gaussian path integral," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 499-514.
    2. Paolinelli, Giovanni & Arioli, Gianni, 2018. "A path integral based model for stocks and order dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 387-399.
    3. Giovanni Paolinelli & Gianni Arioli, 2018. "A path integral based model for stocks and order dynamics," Papers 1803.07904, arXiv.org.
    4. Zura Kakushadze, 2014. "Path Integral and Asset Pricing," Papers 1410.1611, arXiv.org, revised Aug 2016.
    5. Zura Kakushadze, 2015. "Path integral and asset pricing," Quantitative Finance, Taylor & Francis Journals, vol. 15(11), pages 1759-1771, November.
    6. Devreese, J.P.A. & Lemmens, D. & Tempere, J., 2010. "Path integral approach to Asian options in the Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 780-788.
    7. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2006. "A path integral approach to asset-liability management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 404-416.
    8. Axel A. Araneda & Marcelo J. Villena, 2018. "Computing the CEV option pricing formula using the semiclassical approximation of path integral," Papers 1803.10376, arXiv.org.
    9. Cassagnes, Aurelien & Chen, Yu & Ohashi, Hirotada, 2014. "Path integral pricing of outside barrier Asian options," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 266-276.
    10. Capuozzo, Pietro & Panella, Emanuele & Schettini Gherardini, Tancredi & Vvedensky, Dimitri D., 2021. "Path integral Monte Carlo method for option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    11. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.
    12. Giacomo Bormetti & Sofia Cazzaniga, 2011. "Multiplicative noise, fast convolution, and pricing," Papers 1107.1451, arXiv.org.
    13. Yu. A. Kuperin & P. A. Poloskov, 2010. "American Options Pricing under Stochastic Volatility: Approximation of the Early Exercise Surface and Monte Carlo Simulations," Papers 1009.5495, arXiv.org.
    14. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    15. Yu. A. Kuperin & P. A. Poloskov, 2010. "Analytical and Numerical Approaches to Pricing the Path-Dependent Options with Stochastic Volatility," Papers 1009.4587, arXiv.org.
    16. Moore, Ryleigh A. & Narayan, Akil, 2022. "Adaptive density tracking by quadrature for stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    17. Dupoyet, B. & Fiebig, H.R. & Musgrove, D.P., 2012. "Arbitrage-free self-organizing markets with GARCH properties: Generating them in the lab with a lattice model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(18), pages 4350-4363.
    18. Igor Halperin, 2021. "Distributional Offline Continuous-Time Reinforcement Learning with Neural Physics-Informed PDEs (SciPhy RL for DOCTR-L)," Papers 2104.01040, arXiv.org.
    19. Decamps, Marc & De Schepper, Ann & Goovaerts, Marc, 2004. "Applications of δ-function perturbation to the pricing of derivative securities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 677-692.
    20. Kakushadze, Zura, 2017. "Volatility smile as relativistic effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 475(C), pages 59-76.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1809.01342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.