IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Analytical and Numerical Approaches to Pricing the Path-Dependent Options with Stochastic Volatility

Listed author(s):
  • Yu. A. Kuperin
  • P. A. Poloskov
Registered author(s):

    In this paper new analytical and numerical approaches to valuating path-dependent options of European type have been developed. The model of stochastic volatility as a basic model has been chosen. For European options we could improve the path integral method, proposed B. Baaquie, and generalized it to the case of path-dependent options, where the payoff function depends on the history of changes in the underlying asset. The dependence of the implied volatility on the parameters of the stochastic volatility model has been studied. It is shown that with proper choice of model parameters one can accurately reproduce the actual behavior of implied volatility. As a consequence, it can assess more accurately the value of options. It should be noted that the methods developed here allow evaluating options with any payoff function.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: Latest version
    Download Restriction: no

    Paper provided by in its series Papers with number 1009.4587.

    in new window

    Date of creation: Sep 2010
    Handle: RePEc:arx:papers:1009.4587
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1009.4587. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.