IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i22p5552-5560.html

Universality in the tail of musical note rank distribution

Author

Listed:
  • Beltrán del Río, M.
  • Cocho, G.
  • Naumis, G.G.

Abstract

Although power laws have been used to fit rank distributions in many different contexts, they usually fail at the tails. Languages as sequences of symbols have been a popular subject for ranking distributions, and for this purpose, music can be treated as such. Here we show that more than 1800 musical compositions are very well fitted by the first kind two parameter beta distribution, which arises in the ranking of multiplicative stochastic processes. The parameters a and b are obtained for classical, jazz and rock music, revealing interesting features. Specially, we have obtained a clear trend in the values of the parameters for major and minor tonal modes. Finally, we discuss the distribution of notes for each octave and its connection with the ranking of the notes.

Suggested Citation

  • Beltrán del Río, M. & Cocho, G. & Naumis, G.G., 2008. "Universality in the tail of musical note rank distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5552-5560.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:22:p:5552-5560
    DOI: 10.1016/j.physa.2008.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108004548
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2008.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. James B. McDonald, 2008. "Some Generalized Functions for the Size Distribution of Income," Economic Studies in Inequality, Social Exclusion, and Well-Being, in: Duangkamon Chotikapanich (ed.), Modeling Income Distributions and Lorenz Curves, chapter 3, pages 37-55, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nowak, Przemysław & Santolini, Marc & Singh, Chakresh & Siudem, Grzegorz & Tupikina, Liubov, 2024. "Beyond Zipf’s law: Exploring the discrete generalized beta distribution in open-source repositories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
    2. Elio Roca-Flores & Gerardo G. Naumis, 2021. "Assessing statistical hurricane risks: nonlinear regression and time-window analysis of North Atlantic annual accumulated cyclonic energy rank profile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2455-2465, September.
    3. Alvarez-Martinez, R. & Martinez-Mekler, G. & Cocho, G., 2011. "Order–disorder transition in conflicting dynamics leading to rank–frequency generalized beta distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(1), pages 120-130.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dickens, Richard & Machin, Stephen & Manning, Alan, 1998. "Estimating the effect of minimum wages on employment from the distribution of wages: A critical view," Labour Economics, Elsevier, vol. 5(2), pages 109-134, June.
    2. Schweri, Juerg & Hartog, Joop & Wolter, Stefan C., 2011. "Do students expect compensation for wage risk?," Economics of Education Review, Elsevier, vol. 30(2), pages 215-227, April.
    3. Anastasiia Timofeeva, 2015. "On endogeneity of consumer expenditures in the estimation of households demand system," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 37(1), pages 87-106.
    4. Meya, Jasper N. & Drupp, Moritz A. & Hanley, Nick, 2021. "Testing structural benefit transfer: The role of income inequality," Resource and Energy Economics, Elsevier, vol. 64(C).
    5. Duangkamon Chotikapanich & William E. Griffiths & D.S. Prasada Rao & Wasana Karunarathne, 2014. "Income Distributions, Inequality, and Poverty in Asia, 1992–2010," ADBI Working Papers 468, Asian Development Bank Institute.
    6. Schluter, Christian & van Garderen, Kees Jan, 2009. "Edgeworth expansions and normalizing transforms for inequality measures," Journal of Econometrics, Elsevier, vol. 150(1), pages 16-29, May.
    7. van den Berg, Gerard J., 2007. "On the uniqueness of optimal prices set by monopolistic sellers," Journal of Econometrics, Elsevier, vol. 141(2), pages 482-491, December.
    8. Mathias Silva, 2023. "Parametric models of income distributions integrating misreporting and non-response mechanisms," AMSE Working Papers 2311, Aix-Marseille School of Economics, France.
    9. Hajargasht, Gholamreza & Griffiths, William E., 2013. "Pareto–lognormal distributions: Inequality, poverty, and estimation from grouped income data," Economic Modelling, Elsevier, vol. 33(C), pages 593-604.
    10. Denis Beninger & François Laisney, 2006. "On the performance of unitary models of household labor supply estimated on “collective” data with taxation," Cahiers d'Economie et Sociologie Rurales, INRA Department of Economics, vol. 81, pages 5-36.
    11. Samir Saissi Hassani & Georges Dionne, 2021. "The New International Regulation of Market Risk: Roles of VaR and CVaR in Model Validation," Working Papers 21-1, HEC Montreal, Canada Research Chair in Risk Management.
    12. Michael McAleer & Hang K. Ryu & Daniel J. Slottje, 2019. "A New Inequality Measure that is Sensitive to Extreme Values and Asymmetries," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 31-61, March.
    13. Vladimir Hlasny, 2021. "Parametric representation of the top of income distributions: Options, historical evidence, and model selection," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1217-1256, September.
    14. Rana Muhammad Usman & Muhammad Ahsan ul Haq, 2019. "Some Remarks on Odd Burr III Weibull Distribution," Annals of Data Science, Springer, vol. 6(1), pages 21-38, March.
    15. Puente-Ajovin, Miguel & Ramos, Arturo, 2015. "An improvement over the normal distribution for log-growth rates of city sizes: Empirical evidence for France, Germany, Italy and Spain," MPRA Paper 67471, University Library of Munich, Germany.
    16. Michał Brzeziński, 2013. "Parametric Modelling of Income Distribution in Central and Eastern Europe," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 5(3), pages 207-230, September.
    17. Camelia Minoiu & Sanjay Reddy, 2014. "Kernel density estimation on grouped data: the case of poverty assessment," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 12(2), pages 163-189, June.
    18. Callealta Barroso, Francisco Javier & García-Pérez, Carmelo & Prieto-Alaiz, Mercedes, 2020. "Modelling income distribution using the log Student’s t distribution: New evidence for European Union countries," Economic Modelling, Elsevier, vol. 89(C), pages 512-522.
    19. Dmitry I. Malakhov & Nikolay P. Pilnik & Igor G. Pospelov, 2015. "Stability of Distribution of Relative Sizes of Banks as an Argument for the Use of the Representative Agent Concept," HSE Working papers WP BRP 116/EC/2015, National Research University Higher School of Economics.
    20. Alexey Kudryavtsev & Oleg Shestakov, 2023. "Estimates of the Convergence Rate in the Generalized Rényi Theorem with a Structural Digamma Distribution Using Zeta Metrics," Mathematics, MDPI, vol. 11(21), pages 1-10, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:22:p:5552-5560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.