IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v387y2008i14p3615-3628.html
   My bibliography  Save this article

Copula-based measures of dependence structure in assets returns

Author

Listed:
  • Fernandez, Viviana

Abstract

Copula modeling has become an increasingly popular tool in finance to model assets returns dependency. In essence, copulas enable us to extract the dependence structure from the joint distribution function of a set of random variables and, at the same time, to isolate such dependence structure from the univariate marginal behavior. In this study, based on US stock data, we illustrate how tail-dependency tests may be misleading as a tool to select a copula that closely mimics the dependency structure of the data. This problem becomes more severe when the data is scaled by conditional volatility and/or filtered out for serial correlation. The discussion is complemented, under more general settings, with Monte Carlo simulations and portfolio management implications.

Suggested Citation

  • Fernandez, Viviana, 2008. "Copula-based measures of dependence structure in assets returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3615-3628.
  • Handle: RePEc:eee:phsmap:v:387:y:2008:i:14:p:3615-3628
    DOI: 10.1016/j.physa.2008.02.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437108002410
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Umberto Cherubini & Elisa Luciano, 2003. "Pricing and Hedging Credit Derivatives with Copulas," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 32(2), pages 219-242, July.
    2. Junker, Markus & Szimayer, Alex & Wagner, Niklas, 2006. "Nonlinear term structure dependence: Copula functions, empirics, and risk implications," Journal of Banking & Finance, Elsevier, vol. 30(4), pages 1171-1199, April.
    3. Mendes, Beatriz V.M. & Leal, Ricardo P.C. & Carvalhal-da-Silva, Andre, 2007. "Clustering in emerging equity markets," Emerging Markets Review, Elsevier, vol. 8(3), pages 194-205, September.
    4. Panchenko, Valentyn, 2005. "Goodness-of-fit test for copulas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 176-182.
    5. Markus Junker & Alexander Szimayer & Niklas Wagner, 2004. "Nonlinear Term Structure Dependence: Copula Functions, Empirics, and Risk Implications," Econometrics 0401007, EconWPA.
    6. Bartram, Sohnke M. & Taylor, Stephen J. & Wang, Yaw-Huei, 2007. "The Euro and European financial market dependence," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1461-1481, May.
    7. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    8. Giesecke, Kay, 2004. "Correlated default with incomplete information," Journal of Banking & Finance, Elsevier, vol. 28(7), pages 1521-1545, July.
    9. U. Cherubini & E. Luciano, 2002. "Bivariate option pricing with copulas," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 69-85.
    10. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:riibaf:v:42:y:2017:i:c:p:173-190 is not listed on IDEAS
    2. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    3. Michael C. Munnix & Rudi Schafer, 2011. "A Copula Approach on the Dynamics of Statistical Dependencies in the US Stock Market," Papers 1102.1099, arXiv.org, revised Mar 2011.
    4. Mike So & Alex Tse, 2009. "Dynamic Modeling of Tail Risk: Applications to China, Hong Kong and Other Asian Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(3), pages 183-210, September.
    5. Lee, Sangwook & Kim, Min Jae & Kim, Soo Yong, 2011. "Interest rates factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(13), pages 2531-2548.
    6. Chen, Rongda & Li, Cong & Wang, Weijin & Wang, Ze, 2014. "Empirical analysis on future-cash arbitrage risk with portfolio VaR," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 210-216.
    7. Wang, Zong-Run & Chen, Xiao-Hong & Jin, Yan-Bo & Zhou, Yan-Ju, 2010. "Estimating risk of foreign exchange portfolio: Using VaR and CVaR based on GARCH–EVT-Copula model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4918-4928.
    8. Muteba Mwamba, John & Mokwena, Paula, 2013. "International diversification and dependence structure of equity portfolios during market crashes: the Archimedean copula approach," MPRA Paper 64384, University Library of Munich, Germany.
    9. Songjiao Chen & William Wilson & Ryan Larsen & Bruce Dahl, 2016. "Risk Management for Grain Processors and “Copulas”," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 64(2), pages 365-382, June.
    10. Barbedo, Claudio H.S. & de Melo, Eduardo F.L., 2012. "Joint dynamics of Brazilian interest rate yields and macro variables under a no-arbitrage restriction," Journal of Economics and Business, Elsevier, vol. 64(5), pages 364-376.
    11. repec:spr:jqecon:v:16:y:2018:i:2:d:10.1007_s40953-017-0090-7 is not listed on IDEAS
    12. Münnix, Michael C. & Schäfer, Rudi, 2011. "A copula approach on the dynamics of statistical dependencies in the US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4251-4259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:387:y:2008:i:14:p:3615-3628. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.