IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v384y2007i2p693-718.html
   My bibliography  Save this article

Congestion and cascades in payment systems

Author

Listed:
  • Beyeler, Walter E.
  • Glass, Robert J.
  • Bech, Morten L.
  • Soramäki, Kimmo

Abstract

We develop a parsimonious model of the interbank payment system. The model incorporates an endogenous instruction arrival process, a scale-free topology of payments between banks, a fixed total liquidity which limits banks’ capacity to process arriving instructions, and a global market that distributes liquidity. We find that at low liquidity the system becomes congested and payment settlement loses correlation with payment instruction arrival, becoming coupled across the network. The onset of congestion is evidently related to the relative values of three characteristic times: the time for banks’ net position to return to 0, the time for a bank to exhaust its liquidity endowment, and the liquidity market relaxation time. In the congested regime settlement takes place in cascades having a characteristic length scale. A global liquidity market substantially attenuates congestion, requiring only a small fraction of the payment-induced liquidity flow to achieve strong beneficial effects.

Suggested Citation

  • Beyeler, Walter E. & Glass, Robert J. & Bech, Morten L. & Soramäki, Kimmo, 2007. "Congestion and cascades in payment systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 693-718.
  • Handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:693-718
    DOI: 10.1016/j.physa.2007.05.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107005973
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Anna Nagurney & Ke Ke & Jose Cruz & Kitty Hancock & Frank Southworth, 2002. "Dynamics of supply chains: a multilevel (logistical – informational – financial) network perspective," Environment and Planning B: Planning and Design, Pion Ltd, London, vol. 29(6), pages 795-818, November.
    2. James J. McAndrews & Simon M. Potter, 2002. "Liquidity effects of the events of September 11, 2001," Economic Policy Review, Federal Reserve Bank of New York, issue Nov, pages 59-79.
    3. Soramäki, Kimmo & Bech, Morten L. & Arnold, Jeffrey & Glass, Robert J. & Beyeler, Walter E., 2007. "The topology of interbank payment flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(1), pages 317-333.
    4. Bech, Morten L. & Garratt, Rod, 2003. "The intraday liquidity management game," Journal of Economic Theory, Elsevier, vol. 109(2), pages 198-219, April.
    5. Raymond K. Cheung & Warren B. Powell, 1996. "An Algorithm for Multistage Dynamic Networks with Random Arc Capacities, with an Application to Dynamic Fleet Management," Operations Research, INFORMS, vol. 44(6), pages 951-963, December.
    6. Anna Nagurney & Jose Cruz, 2004. "Dynamics of international financial networks with risk management," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 276-291.
    7. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
    8. Ponzi, A. & Aizawa, Y., 2000. "Evolutionary financial market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 507-523.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galbiati, Marco & Soramäki, Kimmo, 2011. "An agent-based model of payment systems," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 859-875, June.
    2. Leinonen, Harry, 2009. "Simulation analyses and stress testing of payment networks," Scientific Monographs, Bank of Finland, number 2009_042, November.
    3. Galbiati, Marco & Soramaki, Kimmo, 2010. "Liquidity-saving mechanisms and bank behaviour," Bank of England working papers 400, Bank of England.
    4. Maeno, Yoshiharu, 2013. "Transient fluctuation of the prosperity of firms in a network economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3351-3359.
    5. Denbee, Edward & Norman, Ben, 2010. "The impact of payment splitting on liquidity requirements in RTGS," Bank of England working papers 404, Bank of England.
    6. Huberto M. Ennis & John A. Weinberg, 2007. "Interest on reserves and daylight credit," Economic Quarterly, Federal Reserve Bank of Richmond, issue Spr, pages 111-142.
    7. Soramäki, Kimmo & Cook, Samantha, 2012. "Algorithm for identifying systemically important banks in payment systems," Economics Discussion Papers 2012-43, Kiel Institute for the World Economy (IfW).
    8. Norman, Ben, 2010. "Financial Stability Paper No 7: Liquidity Saving in Real-Time Gross Settlement Systems - an Overview," Bank of England Financial Stability Papers 7, Bank of England.
    9. Olivier Armantier & Jeffrey Arnold & James J. McAndrews, 2008. "Changes in the timing distribution of Fedwire funds transfers," Economic Policy Review, Federal Reserve Bank of New York, issue Sep, pages 83-112.
    10. De Caux, Robert & Brede, Markus & McGroarty, Frank, 2016. "Payment prioritisation and liquidity risk in collateralised interbank payment systems," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 139-150.
    11. Massimiliano Zanin & David Papo & Miguel Romance & Regino Criado & Santiago Moral, 2016. "The topology of card transaction money flows," Papers 1605.04938, arXiv.org.
    12. Perlin, Marcelo & Schanz, Jochen, 2011. "System-wide liquidity risk in the United Kingdom’s large-value payment system: an empirical analysis," Bank of England working papers 427, Bank of England.
    13. Ball, Alan & Denbee, Edward & Manning, Mark & Wetherilt, Anne, 2011. "Financial Stability Paper No 11: Intraday Liquidity - Risk and Regulation," Bank of England Financial Stability Papers 11, Bank of England.
    14. Kei Imakubo & Yutaka Soejima, 2010. "The Microstructure of Japan fs Interbank Money Market: Simulating Contagion of Intraday Flow of Funds Using BOJ-NET Payment Data," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 28, pages 151-180, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:384:y:2007:i:2:p:693-718. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.