IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v91y2025ics0927538x25000538.html
   My bibliography  Save this article

The impact of informed trading on the effectiveness of technical indicators: A behavioral finance perspective

Author

Listed:
  • Xie, Fei
  • Zhang, Yi
  • Yao, Yangyang
  • Liu, Yang
  • Chen, Xiao

Abstract

This paper introduces a novel approach that bridges the efficacy of technical indicators with the realm of informed trading, positing that the strategic manipulation of these indicators is the linchpin linking the two domains. By developing and utilizing the Proportion of Contrarian (PC) Trades indicator, rooted in behavioral finance principles, and its enhanced counterpart, the Proportion of Contrarian Trades-New (PCN) indicator, this study offers innovative measures of informed trading. Employing a multivariate regression model, the study explores the impact of these indicators on the continuity and profitability of moving average technical indicators. The findings significantly advance the understanding of how informed trading, particularly through large contrarian trades, reduces the continuity of technical signals, thereby increasing short-term market volatility. Furthermore, the study provides robust evidence of how informed traders may manipulate technical indicators to generate misleading signals, which has profound implications for the accuracy of technical analysis. By introducing these innovative indicators and proposing a novel lens through which to view the confluence of technical analysis and informed trading, the study brings a new viewpoint to traditional analytical methods and provides valuable insights to both market participants and regulatory bodies.

Suggested Citation

  • Xie, Fei & Zhang, Yi & Yao, Yangyang & Liu, Yang & Chen, Xiao, 2025. "The impact of informed trading on the effectiveness of technical indicators: A behavioral finance perspective," Pacific-Basin Finance Journal, Elsevier, vol. 91(C).
  • Handle: RePEc:eee:pacfin:v:91:y:2025:i:c:s0927538x25000538
    DOI: 10.1016/j.pacfin.2025.102716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X25000538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2025.102716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Itzhak Ben-David & Francesco Franzoni & Rabih Moussawi & John Sedunov, 2021. "The Granular Nature of Large Institutional Investors," Management Science, INFORMS, vol. 67(11), pages 6629-6659, November.
    2. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    3. Hirshleifer, David & Levi, Yaron & Lourie, Ben & Teoh, Siew Hong, 2019. "Decision fatigue and heuristic analyst forecasts," Journal of Financial Economics, Elsevier, vol. 133(1), pages 83-98.
    4. David Easley & Marcos López de Prado & Maureen O’Hara & Zhibai Zhang, 2021. "Microstructure in the Machine Age," NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3316-3363, National Bureau of Economic Research, Inc.
    5. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    6. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    7. Barberis, Nicholas & Thaler, Richard, 2003. "A survey of behavioral finance," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 18, pages 1053-1128, Elsevier.
    8. Wenjie Ding & Khelifa Mazouz & Qingwei Wang, 2019. "Investor sentiment and the cross-section of stock returns: new theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 493-525, August.
    9. Andersen, Torben G. & Bondarenko, Oleg, 2014. "VPIN and the flash crash," Journal of Financial Markets, Elsevier, vol. 17(C), pages 1-46.
    10. Campbell, John Y. & Giglio, Stefano & Polk, Christopher & Turley, Robert, 2018. "An intertemporal CAPM with stochastic volatility," Journal of Financial Economics, Elsevier, vol. 128(2), pages 207-233.
    11. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    12. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    13. Imad Moosa & Larry Li, 2011. "Technical and Fundamental Trading in the Chinese Stock Market: Evidence Based on Time-Series and Panel Data," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 47(0), pages 23-31, January.
    14. repec:bla:jfinan:v:53:y:1998:i:5:p:1775-1798 is not listed on IDEAS
    15. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    16. Baldauf, Markus & Mollner, Joshua, 2021. "Trading in Fragmented Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 56(1), pages 93-121, February.
    17. Itzhak Ben‐David & Francesco Franzoni & Rabih Moussawi, 2018. "Do ETFs Increase Volatility?," Journal of Finance, American Finance Association, vol. 73(6), pages 2471-2535, December.
    18. Doron Avramov & Tarun Chordia & Amit Goyal, 2006. "The Impact of Trades on Daily Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1241-1277.
    19. Andersen, Torben G. & Bondarenko, Oleg, 2014. "Reflecting on the VPIN dispute," Journal of Financial Markets, Elsevier, vol. 17(C), pages 53-64.
    20. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    21. Chang, Sanders S. & Chang, Lenisa V. & Wang, F. Albert, 2014. "A dynamic intraday measure of the probability of informed trading and firm-specific return variation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 80-94.
    22. Brennan, Michael J. & Subrahmanyam, Avanidhar, 1996. "Market microstructure and asset pricing: On the compensation for illiquidity in stock returns," Journal of Financial Economics, Elsevier, vol. 41(3), pages 441-464, July.
    23. Pedro Raffy Vartanian & Raphael Abs Musa de Lemos & Alvaro Alves de Moura Júnior, 2024. "Monetary Policy and Volatility of Value and Growth Stocks (2009-2021)," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(1), pages 1-46, February.
    24. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2019. "Price Discovery without Trading: Evidence from Limit Orders," Journal of Finance, American Finance Association, vol. 74(4), pages 1621-1658, August.
    25. Brunnermeier, Markus K. & Oehmke, Martin, 2013. "Bubbles, Financial Crises, and Systemic Risk," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1221-1288, Elsevier.
    26. Lasse Heje Pedersen, 2018. "Sharpening the Arithmetic of Active Management," Financial Analysts Journal, Taylor & Francis Journals, vol. 74(1), pages 21-36, February.
    27. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    28. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    29. Barclay, Michael J. & Warner, Jerold B., 1993. "Stealth trading and volatility : Which trades move prices?," Journal of Financial Economics, Elsevier, vol. 34(3), pages 281-305, December.
    30. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    31. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    2. Chang, Sanders S. & Albert Wang, F., 2019. "Informed contrarian trades and stock returns," Journal of Financial Markets, Elsevier, vol. 42(C), pages 75-93.
    3. Berkman, Henk & Koch, Paul D., 2008. "Noise trading and the price formation process," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 232-250, March.
    4. Hussain, Syed Mujahid & Ahmad, Nisar & Ahmed, Sheraz, 2023. "Applications of high-frequency data in finance: A bibliometric literature review," International Review of Financial Analysis, Elsevier, vol. 89(C).
    5. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    6. Sun, Yuxin & Ibikunle, Gbenga, 2017. "Informed trading and the price impact of block trades: A high frequency trading analysis," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 114-129.
    7. Corò, Filippo & Dufour, Alfonso & Varotto, Simone, 2013. "Credit and liquidity components of corporate CDS spreads," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5511-5525.
    8. Abad, David & Massot, Magdalena & Nawn, Samarpan & Pascual, Roberto & Yagüe, José, 2025. "Message traffic and short-term illiquidity in high-speed markets," Emerging Markets Review, Elsevier, vol. 65(C).
    9. Jan Hanousek & Hoje Jo & Christos Pantzalis & Jung Chul Park, 2023. "A Dilemma of Self-interest vs. Ethical Responsibilities in Political Insider Trading," Journal of Business Ethics, Springer, vol. 187(1), pages 137-167, September.
    10. Anagnostidis, Panagiotis & Fontaine, Patrice & Varsakelis, Christos, 2020. "Are high–frequency traders informed?," Economic Modelling, Elsevier, vol. 93(C), pages 365-383.
    11. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    12. Odders-White, Elizabeth R. & Ready, Mark J., 2008. "The probability and magnitude of information events," Journal of Financial Economics, Elsevier, vol. 87(1), pages 227-248, January.
    13. Ferriani, Fabrizio, 2010. "Informed and uninformed traders at work: evidence from the French market," MPRA Paper 24487, University Library of Munich, Germany.
    14. Charles Cao & Eric Ghysels & Frank Hatheway, 1998. "Why Is the Bid Price Greater than the Ask? Price Discovery during the Nasdaq Pre-Opening," CIRANO Working Papers 98s-14, CIRANO.
    15. Panagiotis Anagnostidis & Patrice Fontaine & Christos Varsakelis, 2020. "Are high–frequency traders informed?," Post-Print hal-03062831, HAL.
    16. Adrian Buss & Bernard Dumas, 2019. "The Dynamic Properties of Financial‐Market Equilibrium with Trading Fees," Journal of Finance, American Finance Association, vol. 74(2), pages 795-844, April.
    17. Wu, Chunchi & Xu, Xiaoqing Eleanor, 2000. "Return Volatility, Trading Imbalance and the Information Content of Volume," Review of Quantitative Finance and Accounting, Springer, vol. 14(2), pages 131-153, March.
    18. Jinliang Li, 2016. "When noise trading fades, volatility rises," Review of Quantitative Finance and Accounting, Springer, vol. 47(3), pages 475-512, October.
    19. Paparizos, Panagiotis & Dimitriou, Dimitrios & Kenourgios, Dimitris & Simos, Theodore, 2016. "On high frequency dynamics between information asymmetry and volatility for securities," The Journal of Economic Asymmetries, Elsevier, vol. 13(C), pages 21-34.
    20. Alex YiHou Huang & Ming-Che Hu & Quang Thai Truong, 2021. "Asymmetrical impacts from overnight returns on stock returns," Review of Quantitative Finance and Accounting, Springer, vol. 56(3), pages 849-889, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:91:y:2025:i:c:s0927538x25000538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.