IDEAS home Printed from
   My bibliography  Save this article

Consistent bilateral assignment


  • Moulin, Herve


In the bilateral assignment problem, source a holds the amount ra of resource of type a, while sink i must receive the total amount xi of the various resources. We look for assignment rules meeting the powerful separability property known as Consistency: “every subassignment of a fair assignment is fair”. They are essentially those rules selecting the feasible flow minimizing the sum ∑i,aW(yia), where W is smooth and strictly convex.

Suggested Citation

  • Moulin, Herve, 2017. "Consistent bilateral assignment," Mathematical Social Sciences, Elsevier, vol. 90(C), pages 43-55.
  • Handle: RePEc:eee:matsoc:v:90:y:2017:i:c:p:43-55
    DOI: 10.1016/j.mathsocsci.2016.09.004

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kevin W. S. Roberts, 1980. "Interpersonal Comparability and Social Choice Theory," Review of Economic Studies, Oxford University Press, vol. 47(2), pages 421-439.
    2. Frankel, David M. & Volij, Oscar, 2011. "Measuring school segregation," Journal of Economic Theory, Elsevier, vol. 146(1), pages 1-38, January.
    3. H. Peyton Young, 1987. "On Dividing an Amount According to Individual Claims or Liabilities," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 398-414, August.
    4. Stovall, John E., 2014. "Asymmetric parametric division rules," Games and Economic Behavior, Elsevier, vol. 84(C), pages 87-110.
    5. Thomson, William, 2013. "A characterization of a family of rules for the adjudication of conflicting claims," Games and Economic Behavior, Elsevier, vol. 82(C), pages 157-168.
    6. Moulin, Herve, 2002. "Axiomatic cost and surplus sharing," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.),Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 6, pages 289-357, Elsevier.
    7. Flores-Szwagrzak, Karol, 2015. "Priority classes and weighted constrained equal awards rules for the claims problem," Journal of Economic Theory, Elsevier, vol. 160(C), pages 36-55.
    8. Thomson, William, 2003. "Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey," Mathematical Social Sciences, Elsevier, vol. 45(3), pages 249-297, July.
    9. Stovall, John E., 2014. "Collective rationality and monotone path division rules," Journal of Economic Theory, Elsevier, vol. 154(C), pages 1-24.
    10. Hervé Moulin, 2000. "Priority Rules and Other Asymmetric Rationing Methods," Econometrica, Econometric Society, vol. 68(3), pages 643-684, May.
    11. Aumann, Robert J. & Maschler, Michael, 1985. "Game theoretic analysis of a bankruptcy problem from the Talmud," Journal of Economic Theory, Elsevier, vol. 36(2), pages 195-213, August.
    12. Thomson, William, 2012. "On The Axiomatics Of Resource Allocation: Interpreting The Consistency Principle," Economics and Philosophy, Cambridge University Press, vol. 28(3), pages 385-421, November.
    13. M. L. Balinski & G. Demange, 1989. "An Axiomatic Approach to Proportionality Between Matrices," Mathematics of Operations Research, INFORMS, vol. 14(4), pages 700-719, November.
    14. Hervé Moulin & Jay Sethuraman, 2013. "The Bipartite Rationing Problem," Operations Research, INFORMS, vol. 61(5), pages 1087-1100, October.
    15. Chambers, Christopher P., 2006. "Asymmetric rules for claims problems without homogeneity," Games and Economic Behavior, Elsevier, vol. 54(2), pages 241-260, February.
    16. William Thomson, 2011. "Consistency and its converse: an introduction," Review of Economic Design, Springer;Society for Economic Design, vol. 15(4), pages 257-291, December.
    17. Moulin, Hervé, 2016. "Entropy, desegregation, and proportional rationing," Journal of Economic Theory, Elsevier, vol. 162(C), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:90:y:2017:i:c:p:43-55. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.