IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

A limit theorem for equilibria under ambiguous belief correspondences

  • De Marco, Giuseppe
  • Romaniello, Maria

Previous literature shows that, in many different models, limits of equilibria of perturbed games are equilibria of the unperturbed game when the sequence of perturbed games converges to the unperturbed one in an appropriate sense. The question of whether such a limit property extends to the equilibrium notions in ambiguous games is not yet as clear as it seems; in fact, previous literature shows that the extension fails in simple examples.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0165489613000814
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Mathematical Social Sciences.

Volume (Year): 66 (2013)
Issue (Month): 3 ()
Pages: 431-438

as
in new window

Handle: RePEc:eee:matsoc:v:66:y:2013:i:3:p:431-438
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505565

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Friedman, James W. & Mezzetti, Claudio, 2005. "Random belief equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 51(2), pages 296-323, May.
  2. Jürgen Eichberger & David Kelsey & Burkhard C. Schipper, 2009. "Ambiguity and social interaction," Oxford Economic Papers, Oxford University Press, vol. 61(2), pages 355-379, April.
  3. Atsushi Kajii & Takashi Ui, 2005. "Incomplete Information Games With Multiple Priors," The Japanese Economic Review, Japanese Economic Association, vol. 56(3), pages 332-351.
  4. De Marco, Giuseppe & Romaniello, Maria, 2010. "Ambiguous games with contingent beliefs," MPRA Paper 27507, University Library of Munich, Germany.
  5. Eichberger, Jurgen & Kelsey, David, 2000. "Non-Additive Beliefs and Strategic Equilibria," Games and Economic Behavior, Elsevier, vol. 30(2), pages 183-215, February.
  6. Dow, James & Werlang, Sérgio Ribeiro da Costa, 1992. "Nash equilibrium under knightian uncertainty: breaking-down backward induction," Economics Working Papers (Ensaios Economicos da EPGE) 186, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  7. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
  8. Lo, Kin Chung, 1996. "Equilibrium in Beliefs under Uncertainty," Journal of Economic Theory, Elsevier, vol. 71(2), pages 443-484, November.
  9. Ehud Lehrer, 2012. "Partially Specified Probabilities: Decisions and Games," American Economic Journal: Microeconomics, American Economic Association, vol. 4(1), pages 70-100, February.
  10. Marinacci, Massimo, 2000. "Ambiguous Games," Games and Economic Behavior, Elsevier, vol. 31(2), pages 191-219, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:66:y:2013:i:3:p:431-438. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.