IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Markov Perfect equilibria in repeated asynchronous choice games

  • Haller, Hans
  • Lagunoff, Roger

This paper examines the issue of multiplicity of Markov Perfect equilibria in alternating move repeated games. Such games are canonical models of environments with repeated, asynchronous choices due to inertia or replacement. Our main result is that the number of Markov Perfect equilibria is generically finite with respect to stage game payoffs. This holds despite the fact that the stochastic game representation of the alternating move repeated game is "non-generic" in the larger space of state dependent payoffs. We further obtain that the set of completely mixed Markov Perfect equilibria is generically empty with respect to stage game payoffs.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Mathematical Economics.

Volume (Year): 46 (2010)
Issue (Month): 6 (November)
Pages: 1103-1114

in new window

Handle: RePEc:eee:mateco:v:46:y:2010:i:6:p:1103-1114
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Yoon, Kiho, 2001. "A Folk Theorem for Asynchronously Repeated Games," Econometrica, Econometric Society, vol. 69(1), pages 191-200, January.
  2. Bhaskar, V. & Vega-Redondo, Fernando, 2002. "Asynchronous Choice and Markov Equilibria," Journal of Economic Theory, Elsevier, vol. 103(2), pages 334-350, April.
  3. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
  4. Hans Haller & Roger Lagunoff, 2000. "Genericity and Markovian Behavior in Stochastic Games," Econometrica, Econometric Society, vol. 68(5), pages 1231-1248, September.
  5. J. Tirole & E. Maskin, 1982. "A Theory of Dynamic Oligopoly, I: Overview and Quantity Competition with Large-Fixed Costs," Working papers 320, Massachusetts Institute of Technology (MIT), Department of Economics.
  6. Roger Lagunoff & Akihiko Matsu, . "Asynchronous Choice in Repeated Coordination Games," Penn CARESS Working Papers 23a1aa461811b8f48b0334f6e, Penn Economics Department.
  7. Park, In-Uck, 1997. "Generic Finiteness of Equilibrium Outcome Distributions for Sender-Receiver Cheap-Talk Games," Journal of Economic Theory, Elsevier, vol. 76(2), pages 431-448, October.
  8. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, December.
  9. Prajit K. Dutta, 1997. "A Folk Theorem for Stochastic Games," Levine's Working Paper Archive 1000, David K. Levine.
  10. Maskin, Eric & Tirole, Jean, 1987. "A theory of dynamic oligopoly, III : Cournot competition," European Economic Review, Elsevier, vol. 31(4), pages 947-968, June.
  11. Robert Wilson, 2010. "Computing Equilibria of n-person Games," Levine's Working Paper Archive 402, David K. Levine.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:46:y:2010:i:6:p:1103-1114. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.