IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v42y2006i6p771-793.html
   My bibliography  Save this article

Implementation of the recursive core for partition function form games

Author

Listed:
  • Huang, Chen-Ying
  • Sjostrom, Tomas

Abstract

In partition function form games, the recursive core (r-core) is implemented by a modified version of Perry and Reny’s (1994) non-cooperative game. Specifically, every stationary subgame perfect Nash equilibrium (SSPNE) outcome is an r-core outcome. With the additional assumption of total r-balancedness, every r-core outcome is an SSPNE outcome.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Huang, Chen-Ying & Sjostrom, Tomas, 2006. "Implementation of the recursive core for partition function form games," Journal of Mathematical Economics, Elsevier, vol. 42(6), pages 771-793, September.
  • Handle: RePEc:eee:mateco:v:42:y:2006:i:6:p:771-793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(06)00071-1
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perry, Motty & Reny, Philip J, 1994. "A Noncooperative View of Coalition Formation and the Core," Econometrica, Econometric Society, vol. 62(4), pages 795-817, July.
    2. Moldovanu, Benny & Winter, Eyal, 1994. "Core implementation and increasing returns to scale for cooperation," Journal of Mathematical Economics, Elsevier, vol. 23(6), pages 533-548, November.
    3. Ray, Debraj & Vohra, Rajiv, 1997. "Equilibrium Binding Agreements," Journal of Economic Theory, Elsevier, vol. 73(1), pages 30-78, March.
    4. Kalyan Chatterjee & Bhaskar Dutia & Debraj Ray & Kunal Sengupta, 2013. "A Noncooperative Theory of Coalitional Bargaining," World Scientific Book Chapters, in: Bargaining in the Shadow of the Market Selected Papers on Bilateral and Multilateral Bargaining, chapter 5, pages 97-111, World Scientific Publishing Co. Pte. Ltd..
    5. Tadenuma, K, 1992. "Reduced Games, Consistency, and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 325-334.
    6. Peleg, B, 1986. "On the Reduced Game Property and Its Converse," International Journal of Game Theory, Springer;Game Theory Society, vol. 15(3), pages 187-200.
    7. Roberto Serrano & Rajiv Vohra, 1997. "Non-cooperative implementation of the core," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 14(4), pages 513-525.
    8. Francis Bloch, 1995. "Endogenous Structures of Association in Oligopolies," RAND Journal of Economics, The RAND Corporation, vol. 26(3), pages 537-556, Autumn.
    9. Kalai, Ehud & Postlewaite, Andrew & Roberts, John, 1979. "A group incentive compatible mechanism yielding core allocations," Journal of Economic Theory, Elsevier, vol. 20(1), pages 13-22, February.
    10. Huang, Chen-Ying & Sjostrom, Tomas, 2003. "Consistent solutions for cooperative games with externalities," Games and Economic Behavior, Elsevier, vol. 43(2), pages 196-213, May.
    11. László Á. Kóczy, 2002. "The Core in a Normal Form Game," Economics Bulletin, AccessEcon, vol. 28(9), pages 1.
    12. Yi, Sang-Seung, 1997. "Stable Coalition Structures with Externalities," Games and Economic Behavior, Elsevier, vol. 20(2), pages 201-237, August.
    13. Ray, Debraj, 1989. "Credible Coalitions and the Core," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(2), pages 185-187.
    14. Raymond Deneckere & Carl Davidson, 1985. "Incentives to Form Coalitions with Bertrand Competition," RAND Journal of Economics, The RAND Corporation, vol. 16(4), pages 473-486, Winter.
    15. Moldovanu Benny & Winter Eyal, 1995. "Order Independent Equilibria," Games and Economic Behavior, Elsevier, vol. 9(1), pages 21-34, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kóczy, LászlóÁ., 2015. "Stationary consistent equilibrium coalition structures constitute the recursive core," Journal of Mathematical Economics, Elsevier, vol. 61(C), pages 104-110.
    2. Borm, Peter & Ju, Yuan & Wettstein, David, 2015. "Rational bargaining in games with coalitional externalities," Journal of Economic Theory, Elsevier, vol. 157(C), pages 236-254.
    3. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, December.
    4. Chen-Ying Huang & Tomas Sjöström, 2010. "The Recursive Core for Non-Superadditive Games," Games, MDPI, Open Access Journal, vol. 1(2), pages 1-23, April.
    5. Kóczy, László Á., 2009. "Sequential coalition formation and the core in the presence of externalities," Games and Economic Behavior, Elsevier, vol. 66(1), pages 559-565, May.
    6. Kóczy, L.Á., 2008. "Stationary quasi-perfect equilibrium partitions constitute the recursive core," Research Memorandum 028, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Okada, Akira, 2010. "The Nash bargaining solution in general n-person cooperative games," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2356-2379, November.
    8. László Á. Kóczy & Péter Biró & Balázs Sziklai, 2012. "Fair apportionment of voting districts in Hungary?," Working Paper Series 1204, Óbuda University, Keleti Faculty of Business and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:42:y:2006:i:6:p:771-793. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.